Satellite Image Classification Using Moment and SVD Method

Mohammed S. Mahdi Al-Taeia*, Assad H. Thary Al-Ghrairib

a,bDept. Computer Science, Al-Nahrain University, Iraq
aEmail: altaelemohamed@gmail.com
bEmail: assad.thary@gmail.com

Abstract

The motivation we address in this paper is to classify satellite image using the moment and singular value decomposition (SVD) method; both proposed methods are consisted of two phases; the enrollment and classification. The enrollment phase aims to extract the image classes to be stored in dataset as a training data. Since the SVD method is supervised method, it cannot enroll the intended dataset, instead, the moment based K-means was used to build the dataset. Thereby, the enrollment phase began with partitioning the image into uniform sized blocks, and estimating the moment for each image block. The moment is the feature by which the image blocks were grouped. Then, K-means is used to cluster the image blocks and determining the number of cluster and centroid of each cluster. The image block corresponding to these centroids were stored in the dataset to be used in the classification phase. The results of enrollment phase showed that the image contains five distinct classes, they are; water, vegetation, residential without vegetation, residential with vegetation, and open land. The classification phase consisted of multi stages; image composition, image transform, image partitioning, feature extraction, and then image classification. The SVD classification method used the dataset to estimate the classification feature SVD and compute the similarity measure for each block in the image, while the moment classification method used the dataset to compute the mean of each column and compute the similarity measure for each pixel in the image. The results assessment was carried out on the two classification paths by comparing the results with a reference classified image achieved by Iraqi Geological Surveying Corporation (GSC). The comparison process is done pixel by pixel for whole the considered image and computing some evaluation measurements.

* Corresponding author.
It was found that the classification method was high quality performed and the results showed acceptable classification scores. In the SVD method, the score was about 70.64%, and it is possible to rise up to 81.833% when assuming both classes: residential without vegetation and residential with vegetation is one class. Whereas, the classification score was about 95.84% when using the moment method. This encourage results indicates the ability of proposed methods to efficient classifying multibands satellite image.

Keywords: Satellite image classification; segmentation; block-based classification; pixel-based classification; k-Means; SVD; Moment.

1. **Introduction**

Remote sensing uses satellite imagery technology to sense the landcover of Earth. At the early of 21st century, satellite imagery became widely available with affordable [1]. Satellite image classification is the most significant technique used in remote sensing for the computerized study and pattern recognition of satellite information, which is based on diversity structures of the image that involving rigorous validation of the training samples depending on the used classification algorithm [2]. It is an extreme part of remote sensing that depends originally on the image resolution, which is the most important quality factor in images [3]. Image Classification or segmentation is a partitioning of an image into sections or regions. These regions may be later associated with ground cover type or land use, but the segmentation process simply gives generic labels (region 1, region 2, etc.) to each region. The regions consist of groupings of multispectral or hyperspectral image pixels that have similar data feature values. These data feature values may be the multispectral or hyperspectral data values and/or they may be derived features such as band ratios or textural features [4]. The powerful of such algorithms is depends on the way of extracting the information from huge number of data found in images. Then, according to this information, pixels are grouping into meaningful classes that enable to interpret, mining, and studying various types of regions that included in the image [3]. Many applications based on using Landsat imagery in a quantitative fashion require classification of image pixels into a number of relevant categories or distinguishable classes [5]. These applications use image classification as an important tool used to identify and detect most relevant information in satellite images [6].

2. **Related Work and Contribution**

Many literatures devoted to image segmentation and classification. They differ in many aspects such as; material images, used approach, or even the application limitations. The feasibility of using SVD for image classification is investigated in the following:

2.1 **Related Work**

In [7], a neural network-based cloud classification were provided using the wavelet transforms (WT) and singular value decomposition (SVD), in which the salient textural feature of the data was extracted. In [4], a feed-forward neural network for satellite image segmentation, which provides a way to solve the problem of parametric-dependence involved in statistical approaches using a robust, fault-tolerant, feed-forward neural network. In [8], presented a methodology was provided for the landcover classification of satellite images based
on clustering of the Kohonen’s self-organizing map (SOM), the implementation showed reasonable results. A segmentation and classification of remote sensing images were established in [9], the classified image is given to k-Means algorithm and back propagation algorithm of ANN to calculate the density count, the incremental result found that k-means algorithm gives very high accuracy, but it is useful for single database at a time. Also, an experimental survey for the SVD as an efficient transform in image processing applications performed in [10], some contributions that were originated from SVD properties analysis in different image processing are proposed. New method for satellite image classification was established in [11], there were multiple predefined landcover classes, the results were accurate when describing different landcover regions in the test image. In [12], an efficient image classification technique for satellite images was proposed, the work done with the aid of KFCM and artificial neural network (NN), in spite of relatively long implementation time, the classification results were valued. Furthermore, a cellular with fuzzy rules for classifying the satellite image was implemented in [13], the quality of classified image was also analyzed, and the results indicate the ability of evolutionary algorithms for classifying the satellite images. In [14], a combination of three classification methods was proposed; these methods are the k-means, LVQ (linear vector quantization) and SVM (support vector machine), such combination needed to modify some mathematical relationships that belong to the basic concepts of them, the combination leads to long implementation time and high quality results. While [15] proposed a method for area classification of Landsat7 satellite image using area clustering method, which is depends on pixel aggregation after distributing some seeds in the test image, the assessment showed accurate classification result.

2.2 Contribution

Most of literatures are concerned with improving the classification methods for satellite images. The contribution is described by improving the task of data enrollment instead of repeated interest in the process of classification, which actually leads to improve the classification results. This requires using the SVD method that usually needs to establish the dataset before starting the classification process. Such that, the proposed method is based on the use of k-means based singular value decomposition (SVD), in which SVD is stand for supervised method depending on predefined dataset stored in the dictionary that firstly established using the k-means. The optimal run of training phase leads to create optimal dataset stored in the dictionary and then used to determine intended classification results when the classification phase is running. Implies, the optimal choice of the dataset indicates an optimal classification results.

3. Materials and Methods

Classification of satellite images can be achieved by unsupervised or supervised procedures, it is performed when the image needs to be assigned into a predefined classes based on a number of observed attributes related to that image. This refers to the task of extracting information from satellite image; the information is assigned into classes according to specific features that distributed in the image [16]. The following sections introduce the concepts of the used features: singular value decomposition (SVD) and moment besides the clustering based on K-Means.

3.1 Singular Value Decomposition
Singular Value Decomposition (SVD) is a mathematical tool widely used in image classification; it is useful in factorizations method in linear algebra [17]. SVD technique is based on a theorem of linear algebra that mentions; a rectangular \(m \times n \) matrix \(A \) having \(m \) rows and \(n \) columns in which \(m \geq n \), is can be broken down into the product of three matrices, as given in Equation (1) [18].

\[
A = U S V^T
\]

Where \(U \) is a \(m \times n \) matrix of the orthonormal eigenvectors of \(A A^T \) called the left singular vectors of \(A \) satisfy equation (2), \(V^T \) is the transpose of a \(n \times n \) matrix containing the orthonormal eigenvectors of \(A^T A \) called the right singular vectors of \(A \) satisfy equation (3), \(I_{m \times n} \) and \(I_{p \times p} \) are the identity matrices of size \(n \) and \(p \), respectively, and \(S \) is a \(n \times n \) diagonal matrix with nonnegative diagonal entries of the singular values which are the square roots of the eigenvalues of \(A^T A \) and called the singular values of \(A \), which given in eq.(4) [19], as follows:

\[
U^T U = I_{m \times m}
\]

\[
V^T V = I_{p \times p}
\]

\[
S = \begin{bmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_p
\end{bmatrix}
\]

Where \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \), \(p = \min \{m, n\} \), and \(U = [u_1 \cdots u_m] \) and \(V = [v_1 \cdots v_n] \). In such case, the SVD value is the minimum value of diagonal terms, which can be used as a distinguished feature for any image segment.

3.2 K-Means Based Clustering

K-means is one of the effective unsupervised learning methods that solve the clustering problem. The application of this algorithm on digital image requires being starts with some clusters of pixels in the feature space, each of them defined by its center. The first step is randomly choosing a predefined number of clusters. Second step is allocating each pixel to the nearest cluster. While, the third step is computing new centers with new clusters. These three steps are repeated until convergence. Therefore, the k-means algorithm adopts the following three steps till reaching the final state [9].

1. Determine the centroid coordinate.
2. Determine the distance of each object to the centroid.
3. Group the object based on minimum distance.

3.3 Moment Based Classification

The concept of moment is derived from Archimedes’ discovery of the operating principle of the lever. In the lever one applies a force, in his day most often human muscle, to an arm, a beam of some sort. Archimedes
noted that the amount of force applied to the object (i.e., moment) is defined as the following equation:

\[M = r^s \times F \] ... (5)

Where \(F \) is the applied force, and \(r \) is the distance from the applied force to object and \(s \) is the order of the moment. In image processing, the pixel value represents the force \(F \), whereas \(r \) is the distance between the pixel and the center of the moment. The moment gives an actual indication about the contents of an image or image segment, such that it is used to distinguish different image segment from each other. Also, it is used to describe details of small areas found in the image, which is a useful for image classification [20].

4. Proposed Classification Methods

The generic structure of the proposed method for satellite image classification using K-means based SVD is shown in Figure (1). It is shown that the proposed method is designed to be consisted of two phases: enrollment and classification. The enrollment phase goes to collect the training dataset (referred as \(A \)), which an offline phase is responsible on collecting sample image classes to be stored in dataset matrix to be a comparable models. Whereas the classification phase is an online phase responsible on verifying the contents of the test image in comparison with the trained models found in the dataset, this phase depends on the dataset created by the enrollment phase. Both phases are composed of the three preprocessing stages include: image composition, image transform and preparing. Then, the enrollment includes sequenced stages of image partitioning, feature extraction and then clustering to establish the dataset. On the other hand, the classification phase consist of sequenced stages aims to extract the classification features from the employed image unit. In addition, there are an intermediate stages included in the classification are used to achieve the intended purpose are shown in Figure (1) and described in the following sections.

4.1 Image Composition

Satellite image is usually taken in multibands; this stage is aiming to compose the most informatic three bands in one color image given in RGB color space. The dispersion coefficient \((D) \) of the whole image \(f(i,j) \) that given in equation (6) is used as a measure for quantifying whether a set of observed details are clustered or dispersed compared to a standard case. This parameter indicates the amount of the information found in each band. The three bands of greatest value of \(D \) are chosen to be combined with each other to make the composed image \(F_{R,G,B}(i,j) \) employed in the following stages.

\[D_k = \frac{\sigma^2}{\mu} \] ... (6)

Where, \(\mu \) and \(\sigma^2 \) are the mean and variance of \(k^{th} \) band of satellite image of \(W \times H \) resolution as given in equations (7 and 8). Such that, the green band \(F_G \), red band \(F_R \), and blue band \(F_B \) are assumed to be the first three bands that possess maximum dispersion coefficient \(D_k \) as given in equations (9-11):

\[\mu = \frac{1}{W \times H} \sum_{i=1}^{W-1} \sum_{j=1}^{H-1} f_{ij} \] ... (7)
\[
\sigma^2 = \frac{1}{W \times H} \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} (f_{ij} - \mu)^2
\] ...

\[
F_G(i,j) = \text{Max}_{i,j} (D_k)
\] ...

\[
F_R(i,j) = \text{Max}_{i,j} (D_k)
\] ...

\[
F_B(i,j) = \text{Max}_{i,j} (D_k)
\] ...

4.2 Image Transform

The three estimated bands \(F_R, F_G, \) and \(F_B \) are converted into newly bands according to \(YIQ \) color transformation system. The \(Y \) represents the intensity band, whereas both \(I \) and \(Q \) represent the chrominance bands. Just the \(Y \) band is useful in the present work, which can be noted as \(F_T \) and estimated according to the following relation:

\[
F_T(i,j) = 0.2989 F_R(i,j) + 0.5870 F_G(i,j) + 0.1140 F_B(i,j)
\] ...

4.3 Image Preparation

This stage is regarded to increase the contrast of the given material image. Contrast stretching is used to enhance the appearance of image details, which can be achieved by adopting the linear fitting applied on the input image \(F_T \) for achieving the output image \(F_P \) as given in the following equation:

\[
F_P = a F_T + b
\] ...

Where, \(a \) and \(b \) are the linear fitting coefficients given in the following equations, in which \(Min_1 \) and \(Max_1 \) are the minimum and maximum values of pixels found in transformed image, whereas \(Min_2 \) and \(Max_2 \) are the intended values of the minimum and maximum of output image pixels.

\[
a = \frac{Max_2 - Min_2}{Max_1 - Min_1}
\] ...

\[
b = \frac{Max_2 \times Min_1 - Max_1 \times Min_2}{Max_1 - Min_1}
\] ...

4.4 Classification Conditions Setting

In this stage, the intended conditions of classification status are determined. This conditions are used in both enrollment and classification phases. For the partitioning stage, the maximum block size \(B_{\text{Max}} \) and minimum block size \(B_{\text{Min}} \) are set at the situation that gave best classification results. This depends on the number of try making for achieving best results.

4.5 Enrollment Phase

The enrollment of dataset is an important step in the image classification. It is used for determining the image
classes depending on sequenced stages. It is intended to uniformly partition the prepared image (FP) into equal blocks of size BMax. The reason of using BMax is to make the dataset containing greater number of information related to each class, and make the moment is the feature that recognizes each part. K-Means algorithm is used for grouping these features and then determining the best clusters (centroids) within the resulted features. The image part belongs or closes to each centroid are stored in dataset array to be used in the classification phase. This dataset can resized and scaled down to be half or quarter BMax as needed in the classification. The average of the two successive elements gave new value in the half scaled down dataset, and another averaging leads to get quarter scaled down for the dataset.

Figure 1: Block diagram of the proposed SIC method.
The Moment is a specific quantitative measure used to represent the information found in each image block. The shape of a set of pixels is a distribution of mass, which can be described by first-ordered moment given in equation (5), where the applied force \(F_P \) represented the pixel of block and \(r \) is the distance from the applied force to the center of block. In such case, the pixel value \(F_P \) is regarded as the meant force, while the distance \(D_s \) is determined depends on the position of each pixel (in first, second, third, or fourth quarters) as shown in Figure (2). The moment of each block can be determined as shown below:

1. Compute the Euclidean distance \(D_s \) between each pixel of a specific block and the center of that block (the difference between the pixel and the center of block) as follows:

 a. If the pixel \(F_P(i, j) \) falls in the First quarter then the \(D_{s1} \) is computed by using the following relation:

 \[
 D_{s1} = \sqrt{(|i - i_o| - 0.5)^2 + (|j - j_o| - 0.5)^2} \quad \ldots (16)
 \]

 b. If the pixel \(F_P(i, j) \) falls in the Second quarter then the \(D_{s2} \) is computed by using the following relation:

 \[
 D_{s2} = \sqrt{(|i - i_o| - 0.5)^2 + (|j - j_o| + 0.5)^2} \quad \ldots (17)
 \]

 c. If the pixel \(F_P(i, j) \) falls in the Third quarter then the \(D_{s3} \) is computed by using the following relation:

 \[
 D_{s3} = \sqrt{(|i - i_o| + 0.5)^2 + (|j - j_o| - 0.5)^2} \quad \ldots (18)
 \]

 d. If the pixel \(F_P(i, j) \) falls in the Fourth quarter then the \(D_{s4} \) is computed by using the following relation:

 \[
 D_{s4} = \sqrt{(|i - i_o| + 0.5)^2 + (|j - j_o| + 0.5)^2} \quad \ldots (19)
 \]

 Where \(i_o, j_o \) represent the indices of the center block.

2. Compute the moment \(M_p (i, j) \) of each pixel in a specific block of image by using the following relations:

 \[
 M_p (i, j) = F_P (i, j) \times D_s \quad \ldots (20)
 \]

3. Compute the moment of a specific block \((M) \) in image by using the following relation:

 \[
 M = \frac{1}{B_h \times B_w} \sum_{i=0}^{B_h} \sum_{j=0}^{B_w} M_p (i, j) \quad \ldots (21)
 \]

 Where \(B_h \) is the height of block and \(B_w \) is the width of block, \(M (i, j) \) represent the moment of pixel in a specific block of image, and \(F_P (i, j) \) represent the pixel value of a specific block at position \((i, j)\), \(i \), and \(j \) are indices of the pixel in block of image.
Figure 2: Schematic description for computing the distance DS for cases (a and b), which are similar to cases (c and d).

The implementation of K-Means depends on two input parameters, they are; the number of clusters (or classes) and the moment values of each block in the image. Actually, the number of classes (N_C) in the prepared image is determined in the following steps:

1. Determine the number of pixels in satellite image N_T by using the following relation:

 \[N_T = W \times H \] \hspace{1cm} \ldots (22)

 Where W represents the width of satellite image and H represents the height of satellite image.

2. Determine the standard deviation (σ) to prepare image that is by employing equation (8) to be modified in the following form:

 \[\sigma = \sqrt{\frac{1}{N_T} \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} (F_{i,j} - F_T)^2} \] \hspace{1cm} \ldots (23)
Where $\overline{F_p}$ is the mean of the prepared image that can be computed by the following relation:

$$\overline{F_p} = \frac{1}{N} \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} F_p(i,j)$$

(24)

3. Calculate the number of pixels N in the image that fall within the range of 2σ in the image distribution.

4. Compute the percent (P) of the pixels number (N) in 2σ expansion and the number of pixels in whole image (N_T) by using the following relation:

$$P = \frac{N}{N_T}$$

(25)

5. The number of classes (N_C) is equal to the multiplication of the percent (P) by the maximum probable number (P_M) of classes may found in the satellite images, as follows:

$$N_C = P \times P_M$$

(26)

Dataset Formatting and Storing deals with output centroid of K-Means algorithm. The image block corresponding or closest to centroid moment is stored in two dimensional dataset array (A), in which each block is converted into one dimensional vector to be one column in A. Such that, the width of A is the number of classes (N_C) while the height of A is equal to the number of pixels found in the block (i.e., $B_{Max} \times B_{Max}$).

4.6 Classification Phase

The classification phase is carried out after performing the training phase (enrollment). It can be achieved by two paths: SVD method (block-based classification) or Moment method (pixel-based classification). The SVD method path depends on the established dataset array A, where the prepared image is segmented into non-uniform blocks and then each block is assigned to the dataset array A to compute the classification feature. According to this feature, the block is labeled with available classes. Whereas, the moment method path depends on the proximity of each pixel into the available classes in the dataset array A. The following subsections explain more details about the two classification paths:

A. SVD Classification Phase

Since the SVD classification method needs to partition the image into predefine sized image block, where the SVD classification phase used the quadtree to segment the prepared image into non uniform blocks restricted between B_{Max} and B_{Max}. Then each square either leaved as it or subdivided into four quadrants when it satisfies the partitioning conditions. Then, each block is assigned to the dataset array A to compute the classification feature. According to this feature, the block is labeled with available classes. Since the SVD classification method needs to partition the image into predefine sized image block, quadtree partitioning method is used for segmenting the image into addressed image blocks. Therefore, the implementation of quadtree partitioning method requires to set some parameters are related the partitioning conditions, which are used to control the process of partitioning. These control parameters are given in the following:
1. Maximum block size (B_{max}).
2. Minimum block size (B_{min}).
3. Mean factor (β): represents the multiplication factor; when it is multiplied by global mean (M_g) it will define the value of the extended mean (M_e), i.e. $M_e = \beta \times M_g$.
4. Inclusion factor (α): represents the multiple factor, when it is multiplied by the global standard deviation (σ) it will define the value of the extended standard deviation (σ_e), i.e. $\sigma_e = \alpha \times \sigma$.
5. Acceptance ratio (R): represents the ratio of the number of pixels whose values differ from the block mean by a distance more than the expected extended standard deviation.

The adopted SVD feature is estimated for each block to be compared with that of the dataset A. This is first including the conversion of the block into one dimensional vector (V) and included in the dataset array A to be the sixth column, such that the array will dimensioned as $[(N_c+1) \times (B_{\text{min}} \times B_{\text{max}})]$. The challenged problem is to fit the length of columns of the dataset array A with the vector V. This problem is over comes by down sampling the length of columns of A to be equal to the length of the vector V. The down sampling of each column elements is done by averaging process, in which the reducing ratio (R) is computed by dividing the length of current image block B_l by the length of the A columns (i.e., $B_{\text{max}} \times B_{\text{max}}$) as follows:

$$R = \frac{B_l}{B_{\text{max}} \times B_{\text{max}}} \quad \cdots (27)$$

When the columns of the dataset array A are fitted, the SVD feature of current image block can be computed in comparison with dataset columns.

The differences between the computed SVD are used to compute the similarity measure (S_{V_k}) for the last column with that of its previous columns as follows:

$$S_{V_k} = 1 - |SVD_{N_t+1} - SVD_l| \quad \cdots (28)$$

Where, SVD_k is the computed singular value decomposition feature of the k^{th} class, and SVD_{k+1} is the singular value decomposition of the image block that need to be classified. The maximum value of S_{V_k} refers to the class that image block is belonging to. The comparison leads to classify the image blocks.

B. Moment Classification Phase

Moment classification is an additional method used to classify satellite image depending on the dataset array A. The mean of each column of A is computed as follows:

$$\bar{a}_k = \frac{1}{N} \sum_{n=0}^{N} A[n,k] \quad \cdots (29)$$

Where, N represents the length of each column of A. The result is N_t values of means \bar{a}_k each belong to a specific class. The classification can be done by computing the similarity measure (S_{m_k}) between each pixel in
the prepared image \(F_P(i,j) \) and the means \(\bar{a}_k \) as given in equation (29). The maximum value of \(S_{mk} \) refers to the class that image pixel is belonging to.

\[
S_{mk} = 1 - |\bar{a}_k - F_P(i,j)| \quad \text{... (30)}
\]

5. Results and Evaluation

The multiband satellite image used in the classification was capture by Landsat satellite, it cover the area of Baghdad city in Iraq. Figure (3) shows the six bands of used satellite image. The resolution of each band is 1024x1024 pixels, which carried acceptable range of informatic details about the image of consideration. One of the most important factors of using the Landsat Baghdad image is the different concepts of landcover appears in the image, which leads to different classes found in the image.

![Figure 3: The used six bands of Baghdad city given by Landsat.](image)

The results of the dispersion coefficient \((D) \) of used six bands are given in Table (1). It is shown that the greatest three values of the dispersion coefficients are belong to the bands (1, 2, and 3) respectively. Therefore, to compose these bands with each other for making one color image, it is assumed that the band (1) is stand for green \((G) \), band (2) is stand for red \((R) \), and band (3) is stand for blue \((B) \) in the RGB colored image. Figure (4) shows the result of the composition process. Actually, the composed image enjoyed with more contrast and more visual details.

![Table 1: Resulted dispersion coefficient of the adopted six bands.](table)

<table>
<thead>
<tr>
<th>Band</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.411398</td>
</tr>
<tr>
<td>2</td>
<td>0.402812</td>
</tr>
<tr>
<td>3</td>
<td>0.390426</td>
</tr>
<tr>
<td>4</td>
<td>0.259853</td>
</tr>
<tr>
<td>5</td>
<td>0.278288</td>
</tr>
<tr>
<td>6</td>
<td>0.319443</td>
</tr>
</tbody>
</table>
Figure 4: Result of the image composition.

Image transform is used to enhance the satellite image by using equation (12). It is applied on the three color components \((R, G, \text{ and } B)\) of the image, which leads to converting the image from three bands into one band is better and suited for machine based analysis. The image preparation aimed to make the contrast of the considered image is full. Full contrast is achieved when choosing the values of \(\text{Min}_2\) and \(\text{Max}_2\) to be 0-255 by using equation (13). Figure (5) shows the result of transformed and prepared image.

Figure 5: Results of image transform and preparation.

5.1 Enrollment Results

The result of enrollment phase is a dataset stored in two dimensional array \((A)\), the number of columns of this array is equal to the number of classes, while the number of rows of this array is equal to the length of the class. The length of the class is equal to the number of pixels contained in the image block, which can be determined by product the width by height of the block. The results of the uniform image partitioning is shown in Figure (6), in which the prepared image of resolution \(1024 \times 1024\) **pixel** is partitioned into image blocks each of size
8x8 pixel. The blocks greater than B_{Max} lead to confuse the classification results, whereas the blocks less than B_{Min} lead to poor image parts and no information may found in image blocks. The moment of each image block was computed according to equation (21), the minimum and maximum resulted values of computed moment are shown in Figure (7). It is noticeable that the minimum value of the moment is zero, while the maximum value is 808.9465. The zero value refers to empty blocks, which have no information in, while the maximum value refers to much information found in that block. The application of the K-Means needs to set the range of expanding the clusters along the moment scale. Therefore, the range between the maximum and minimum values of the moment is 808.9465, which is divided into five ($N_C=5$) of regions each of which extended by a maximum distance is equal to ($D_r=808.9465/5=161.7893$ unit).

![Figure 6: Result of uniform image partitioning (B_{Max}=8 pixels).](image)

![Figure 7: Sample range of resulted moment values.](image)

Finally, the dataset array A contains image blocks corresponding to the final centroids resulted from the application of the K-Means, each of these blocks represents a one column in the dataset array A sequentially. Figure (8) shows the behavior of these five columns that represent the labels of the discovered five classes of the image under consideration, whereas Figure (9) displays the position of the image blocks that consisting in the dataset array A. It is observed that dataset had contained different classes, which confirms the correct path of clustering, where the resulted classes were far away from each other by an equivalent distances in the grey scale
depending on the details of each class.

![Figure 8: Behavior of five columns of five classes in the image.](image8)

![Figure 9: Resulted five classes.](image9)

5.2 Classification Results

In the SVD method, the finding of best values of control parameters and the best partitioning of the quadtree is very important problem since the control parameters govern the partitioning process that lead to intended classification. Figure (10) shows the best control parameters of quadtree partitioning method.

![Figure 10: Result of quadtree partitioning for control parameters.](image10)
The classification result of the prepared image using the SVD method is displayed in Figure (11). It is shown that the distribution of classes along the image region was acceptable. The best values of control parameters make the partitioning process more accurate, which leads to accurate classification results. It is seen that the results of image partitioning based on image homogeneity measurements are very acceptable. The result of the partitioning depends on the quantity of the uniformity for each block.

On the other hand, Figure (12) displays the classification result of the image using moment method (pixel-based classification). The distribution of image classes along the image region is similar to that of the block-based method. Also, it is noticeable that both methods were able to sense the small variation found in some image regions, and truly classifying the fine details that regions.

5.3 Results Evaluation

To estimate the accuracy of the proposed two methods of satellite image classification, a standard image is classified by Geological Surveying Corporation (GSC) used for purpose of comparison. This standard image is
classified by Maximum Likelihood Method using ArcGIS software version 9.3. The classification map in this image is shown in Figure (13), there are five distinct classes; they are: water, vegetation, residential with vegetation (Resident -1), residential without vegetation (Resident -2), and open land, let we denote them as C_1 for class water and C_2 for class vegetation and C_3, C_4, C_5 for classes Resident with vegetation, Resident without vegetation, and Open Land respectively.

The process of comparison was carried out pixel by pixel to guarantee the comparison result gave more realistic indication. The procedure is done by counting the number of pixels in the classified image that gave identify same class in the standard classified image. Then, the percent (P_T) of the identical classified pixels (C_p) to the total number of pixels (T_p) found in the image is computed as follows:

$$P_T = \frac{C_p}{T_p} \times 100\% \quad \ldots (31)$$

Where, P_T represents the overall accuracy (OA) of the proposed classification relative to the classification of the standard classified image given by GSC. Moreover, this relation can be employed to estimate the accuracy of each class in the image separately. This is carried out by examining pixels of classified image that identify same class in the standard classified image, which can be given in the following relation:

$$P_k = \frac{C_k}{T_k} \times 100\% \quad \ldots (32)$$

Where, P_k is the classification accuracy of k^{th} class that represents the user's accuracy (UA), C_k is the total number of pixels that classified as same as its corresponding pixels in the standard classified image given by GSC, and T_k is the total number of pixels belong to the k^{th} class in the classified image.

![The Standard satellite image classification given by GSC.](image)
Accordingly, the producer accuracy (PA) can be computed using the following relation:

\[P_p = \frac{C_p}{C_p} \times 100\% \] \hspace{1cm} (33)

Where, \(P_p \) represents the producer accuracy (PA), and \(C_p \) is the total number of pixels of each class in the standard classified image. The two parameters \(P_c \) and \(P_p \) are prepared to estimate both the commission error (\(E_C \)) and omission error (\(E_O \)) as follows:

\[E_C = 100 - P_K \] \hspace{1cm} (34)

\[E_O = 100 - P_P \] \hspace{1cm} (35)

The use of equation (31) on the whole image gives best estimation for pixel classification rather than the use of random selected areas since the selection of small considered area may give unstable result at each run of comparison due to the change of position of considered area. The evaluation results of both SVD method (block based classification) and moment method (pixel based classification) are listed in Tables (3 and 4) respectively, these tables include the overall accuracy and class accuracy for the two adopted classification methods. Further evaluation was indicated by measuring the area covered by each class using the following relations:

\[A_C = C_T \times 30 \] \hspace{1cm} (36)

\[A_x = C_p \times 30 \] \hspace{1cm} (37)

Where, \(A_C \) represent the area covered by each class in both two adopted classification methods, and \(A_x \) represent the area covered by each pixel in standard classified image. Table (2) shows the area covered by each class for the classified image mentioned before.

Table 2: Area Covered by each pixel.

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Area (_\text{SVD}) (m(^2))</th>
<th>Area (_\text{STD}) (m(^2))</th>
<th>Area (_\text{Moment}) (m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>28826 70</td>
<td>2635200</td>
<td>2882670</td>
</tr>
<tr>
<td>Vegetation</td>
<td>70457 70</td>
<td>7248360</td>
<td>7045770</td>
</tr>
<tr>
<td>Resident With Vegetation</td>
<td>62938 20</td>
<td>5510880</td>
<td>6293820</td>
</tr>
<tr>
<td>Resident Without Vegetation</td>
<td>13607 850</td>
<td>1513212 0</td>
<td>12299190</td>
</tr>
<tr>
<td>Open Land</td>
<td>16271 70</td>
<td>930720</td>
<td>2933830</td>
</tr>
</tbody>
</table>
Table 3: The results of SVD classification method.

<table>
<thead>
<tr>
<th>Classified Image</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>CR</th>
<th>PX</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>7126.5</td>
<td>14697</td>
<td>554</td>
<td>108</td>
<td>121</td>
<td>6</td>
<td>8784</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>2402.3</td>
<td>16139</td>
<td>5</td>
<td>46607</td>
<td>9504</td>
<td>83</td>
<td>2146</td>
<td>12</td>
</tr>
<tr>
<td>C3</td>
<td>665</td>
<td>46725</td>
<td>90637</td>
<td>14541</td>
<td>0</td>
<td>259</td>
<td>1836</td>
<td>96</td>
</tr>
<tr>
<td>C4</td>
<td>136</td>
<td>12025</td>
<td>71947</td>
<td>3923</td>
<td>20</td>
<td>277</td>
<td>5044</td>
<td>04</td>
</tr>
<tr>
<td>C5</td>
<td>0.0</td>
<td>17</td>
<td>49</td>
<td>6053</td>
<td>249</td>
<td>05</td>
<td>3102</td>
<td>4</td>
</tr>
</tbody>
</table>

CR	9608 9	2348 9	20979	43335	95	542	1048	39	576
CR	74.16	68.71	996	43.202	86	86.53	333	43.9	17
CR	25.83	31.28	004	56.797	14	13.46	465	83	
OA	70.64075								

Table 4: The results of moment classification method.

<table>
<thead>
<tr>
<th>Classified Image</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>CR</th>
<th>PX</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>96089</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9608 9</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>C2</td>
<td>0.0</td>
<td>2348 59</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2348 59</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>C3</td>
<td>0.0</td>
<td>0.0</td>
<td>2697 94</td>
<td>0.0</td>
<td>0.0</td>
<td>2697 94</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>C4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4699 73</td>
<td>0.0</td>
<td>4699 73</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>C5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4362 9</td>
<td>5423 9</td>
<td>9786 1</td>
<td>55.43</td>
</tr>
</tbody>
</table>

CR	96089	2348 59	2697 94	4353 95	5423 9	1048	576
CR	100	100	100	90.38	305	100	
CR	0.0	0.0	0.0	5.615	95	0.0	
OA	95.84						
6. Results Discussion

These results showed the classification methods were successful due to the percents of identical classes (P_k) were acceptable. In SVD method, it is noticeable that the class of Resident with Vegetation (C_3) has less identical percent due to the details of such class is large enough to be described in the used image, while the class of water (C_1) has a high identical percent due to it appeared in different spectral intensity in comparison with other classes, whereas; other classes are distributed moderately between the two mentioned classes. Also, it showed that the overall accuracy of the classified satellite image is 70.64075%, while the total accuracy is about 81.83279% when the Resident without Vegetation (C_4) and Resident with vegetation (C_3) classes are regarded as same class. Figure (14) indicates that the class of C_1 showed high identification percent in comparison with that of standard image relative to other classes in the standard image. Moreover, Table (3) mentioned that the largest user's accuracy achieved with the high accuracy for the class of C_1, the high value of user's accuracy has been found 81.13046% for comparison between the results of the standard classified image and the SVD based classified image, while the smallest user's accuracy was found in the class of Resident with Vegetation (C_3) 49.34067%. It is concluded that the rest user's accuracy for the classes of satellite image are limited between the maximum and minimum percent user's accuracy. On other hand, the high producer accuracy achieved for the class C_1 is 86.5335% and the smallest producer accuracy for the class C_3 is 43.20286% the rest classes are limited between the larger and smaller producer accuracy as shown in Figure (15), where the class of Resident with Vegetation has the smallest accuracy value. Also, Figure (16) describes the variation of each class in both user's accuracy and producer accuracy, where the user's accuracy classes: water, resident With Vegetation, and Open Land class are greater than their producer accuracy, while the user's accuracy of C_2 and C_4 are less than the producer accuracy of the standard classified image, which indicates the classes of C_1, C_2 and, C_3 are more changed compared with the other classes.

![Figure 14: Classes accuracy in SVD method.](image)

In moment method, it is noticeable that the class of Open Land (C_5) has less identical percent due to it was appeared very bright region in the used image, while the other classes have a high identical percent. Also, the identical percent of moment method was better than that of SVD method because the later one depends on classifying the image block by block, in which the minimum block size was 2 pixels, which may be relatively large in comparison with the medium resolution of Landsat image. For this reason, the moment method showed better results since it was going to classify the image pixel by pixel, which independent on the image resolution.
The results of moment method listed in Table (4) shows that the overall accuracy of the classification is 95.84% due to the high user's accuracy and producer accuracy are yield. This make the omission and commission errors are very small values as given in Table (4), the high identification percent of moment classification method are for classes: C_4, C_1, C_2 and C_3 where the user accuracy are 100%, and user accuracy is 55.43% for class of C_5, and producer accuracy of classes: C_1, C_2, C_3 and C_5 are 100%, while it is 90.38305% for the class of C_4 in the standard classified image as shown in Figure (17). The user's accuracy of classes of Water, Vegetation, and Resident with vegetation of the classified image are not changed, while the producer accuracy of the standard classified image are relatively changed. The user's accuracy of the Open Land class is less than the producer accuracy. Also, the user's accuracy of the Resident without vegetation class is greater than the producer accuracy of the standard classified image. Figure (18) shows the user's accuracy of each class of moment method, where the user accuracy of Open Land class is less than other classes, while the producer accuracy of Resident without vegetation class is the least as shown in figure (19).

![Figure 15: Producer accuracy of classes in SVD method.](image)

![Figure 16: Relation between producer and user's accuracy of classes By using SVD Method.](image)

![Figure 17: Relation between producer and user's accuracy of classes by using Moment Method.](image)
7. Conclusions and Future Work

In this paper, the moment classification showed high accurate classification where, the identical percent of moment classification method was better than that of SVD classification method. Where, the moment classification method gave classification accuracy 95.84%, which is better than the SVD classification that gave classification accuracy of about 81.5%. The classification results of moment classification method show that the user's accuracy of classes: Water, Vegetation and Resident with vegetation classes are unchanged in comparison with the producer accuracy, while the user's accuracy of Resident without vegetation is greater than the producer accuracy for about 10%. Also, the user's accuracy of Open Land class is less than that of producer accuracy for about 44.57%, which referred to the error commission. When using SVD method, the overall accuracy of the classified satellite image is 70.64075%, which can be raised to be about 81.83279% when regarding both Resident without vegetation and Resident with vegetation classes as same class. Where the used of quadtree serves the classification stage due to the block size was smaller time by time till reaching to spectrally homogenous region. And, the classification results of SVD method show that the variation of each class in both user's accuracy and producer accuracy, where the user's accuracy classes: water, resident With Vegetation, and Open Land class are greater than their producer accuracy, while the user's accuracy of Vegetation and Resident without vegetation are less than the producer accuracy of the standard classified image, which indicates the classes of water, Resident with vegetation and, Vegetation are more changed compared with the other classes. So that, for future work there are some suggestions taken into account for developing the implementation of the
present work, which help to achieve a higher level of performance efficiency, the most important suggestions are given in the following:

1. Classify the satellite image by using Neural Network instead of Singular Value Decomposition as a block based oriented method.
2. The use of genetic algorithm for classify satellite image instead of SVD method with K-Means algorithm for enrollment phase to prepare dataset A.
3. Used ISO Data instead of K-Means for enrollment phase to prepare Dataset A with the moment of each block.
4. It can be used Fuzzy c-means instead of K-Mean for enrollment phase to prepare Dataset A.

Acknowledgements

I would like to acknowledge my sincere thanks and appreciation to Dr. Mohammed S. Altaei for helping the paper, assistance, encouragement, valuable advice, for giving me the major steps to go on to explore the subject, sharing with me the ideas in my research and discuss the points that I left they are important. Grateful Thanks are due to the Head of Computer Science Department, and the staff of the Department at College of Sciences of Al-Nahrain University for their kind attention.

References

MRF Model", Journal of Network Communications and Emerging Technologies (JNCET), Volume 1, Issue 1, 2015.
