Forecasting with Machine Learning

Dr. Osman Mohamed Abbas


For years, people have been forecasting weather patterns, economic and political events, sports outcomes, and more. In this paper we discussed the ways of using machine learning in forecasting, machine learning is a branch of computer science where algorithms learn from data. The fundamental problem for machine learning and time series is the same: to predict new outcomes based on previously known results. Using the suitable technique of machine learning depend on how much data you have, how noisy the data is, and what kind of new features can be derived from the data. But these techniques can improve accuracy and don’t have to be difficult to implement.


forecasting; machine learning; accuracy.

Full Text:



Ahmed, N.K., Atiya, A.F., El Gayar, N., El-Shishiny, H.: An empirical comparison of machine learning models for time series forecasting. Econometric Reviews 29(5- 6) (2010)

Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)

Alpaydin, E.: Introduction to Machine Learning, 2nd edn. Adaptive Computation and Machine Learning. The MIT Press (February 2010)

Anderson, T.W.: The statistical analysis of time series. J. Wiley and Sons (1971)

Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. AIR 11(1-5), 11–73 (1997)

Ben Taieb, S., Bontempi, G.: Recursive multi-step time series forecasting by per- turbing data. In: Proceedings of IEEE-ICDM 2011(2011)

Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. ArXiv e-prints (August 2011)

Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of time series by combining direct and mimo strategies. In: Proceedings of the 2009 IEEE International Joint Conference on Neural Networks, Atlanta, U.S.A., pp. 3054–3061 (June 2009)

Ben Taieb, S., Sorjamaa, A., Bontempi, G.: Multiple-output modelling for multi-step-ahead forecasting. Neurocomputing 73, 1950–1957 (2010) Machine Learning Strategies for Time Series Forecasting 75

Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of time series by combining direct and mimo strategies. In: International Joint Conference on Neural Networks (2009)

Birattari, M., Bontempi, G., Bersini, H.: Lazy learning meets the recursive least- squares algorithm. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) NIPS 11, pp. 375–381. MIT Press, Cambridge (1999)

Bontempi, G.: Local Learning Techniques for Modeling, Prediction and Control. PhD thesis, IRIDIA- Universit´e Libre de Bruxelles (1999)

Bontempi, G.: Long term time series prediction with multi-input multi-output local learning. In: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP 2008, Helsinki, Finland, pp. 145–154 (February 2008)

Bontempi, G., Birattari, M., Bersini, H.: Lazy learners at work: the lazy learning toolbox. In: Proceeding of the 7th European Congress on Intelligent Techniques and Soft Computing, EUFIT 1999 (1999)

Bontempi, G., Birattari, M., Bersini, H.: Local learning for iterated time-series prediction. In: Bratko, I., Dzeroski, S. (eds.) Machine Learning: Proceedings of the Sixteenth International Conference, pp. 32–38. Morgan Kaufmann Publishers, San Francisco (1999)

Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step- ahead prediction in local learning. International Journal of Forecasting (2011) (in press, corrected proof)

Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in the presence of noise. PHYD 51, 52–98 (1991)

Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-Ahead Time Series Predic- tion. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006)

Crone, S.F.: NN3 Forecasting Competition, http://www.neural-forecasting- (last up- date May 26, 2009) (visited on July 05, 2010)

Crone, S.F.: NN5 Forecasting Competition, http://www.neural-forecasting- (last up- date May 27, 2009) (visited on July 05, 2010)

Crone, S.F.: Mining the past to determine the future: Comments. International Journal of Forecasting 5(3), 456–460 (2009); Special Section: Time Series Monitor-ing

Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50(4), 987–1007 (1982)

Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Physical Review Letters 8(59), 845–848 (1987)

Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. Technical report, Los Alamos National Laboratory (1988)

De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3), 443–473 (2006)

De Gooijer, J.G., Kumar, K.: Some recent developments in non-linear time series modelling, testing, and forecasting. International Journal of Forecasting 8(2), 135– 156 (1992)

Guo, M., Bai, Z., An, H.Z.: Multi-step prediction for nonlinear autoregressive mod- els based on empirical distributions. In: Statistica Sinica, pp. 559–570 (1999)

Hand, D.: Mining the past to determine the future: Problems and possibilities. International Journal of Forecasting (October 2008) 76 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)

Hsu, W., Lee, M.L., Wang, J.: Temporal and spatio-temporal data mining. IGI Pub. (2008)

Ikeguchi, T., Aihara, K.: Prediction of chaotic time series with noise. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci-ences E78-A(10) (1995)

Kline, D.M.: Methods for multi-step time series forecasting with neural networks. In: Peter Zhang, G. (ed.) Neural Networks in Business Forecasting, pp. 226–250. Information Science Publishing (2004)

Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: predic- tion and system modelling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, NM (1987)

Lendasse, A. (ed.): ESTSP 2007: Proceedings (2007)

Lendasse, A. (ed.): ESTSP 2008: Proceedings. Multiprint Oy/Otamedia (2008) ISBN: 978-951-22-9544-9

Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring ana- logues. Journal of the Atmospheric Sciences 26, 636–646 (1969)

Mat´ıas, J.M.: Multi-output Nonparametric Regression. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 288–292. Springer, Heidelberg (2005)

McNames, J.: A nearest trajectory strategy for time series prediction. In: Pro- ceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, pp. 112–128. K.U. Leuven, Belgium (1998)

Micchelli, C.A., Pontil, M.A.: On learning vector-valued functions. Neural Com- put. 17(1), 177–204 (2005)

Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

Owen, S.: Mahout in action. Manning (2012)

Packard, N.H., Crutchfeld, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Physical Review Letters 45(9), 712–716 (1980)

Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Advances in Industrial Control. Springer- Verlag New York, Inc., Secaucus (2005)

Poskitt, D.S., Tremayne, A.R.: The selection and use of linear and bilinear time series models. International Journal of Forecasting 2(1), 101–114 (1986)

Price, S.: Mining the past to determine the future: Comments. International Jour- nal of Forecasting 25(3), 452–455 (2009)

Priestley, M.B.: Non-linear and Non-stationary time series analysis. Academic Press (1988)

Saad, E., Prokhorov, D., Wunsch, D.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks 9(6), 1456–1470 (1998)

Schuster, H.G.: Deterministic Chaos: An Introduction. Weinheim Physik (1988)

Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70(16-18), 2861–2869 (2007)

Sorjamaa, A., Lendasse, A.: Time series prediction using dirrec strategy. In: Verley-sen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN 2006, Bruges, Belgium, April 26-28, pp. 143–148 (2006)

Sorjamaa, A., Lendasse, A., Verleysen, M.: Pruned lazy learning models for time series prediction. In: European Symposium on Artificial Neural Networks, ESANN 2005, pp. 509–514 (2005) Machine Learning Strategies for Time Series Forecasting 77

Takens, F.: Detecting strange attractors in fluid turbulence. In: Dynamical Systems and Turbulence. Springer, Berlin (1981)

Tiao, G.C., Tsay, R.S.: Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting 13(2), 109–131 (1994)

Tong, H.: Threshold models in Nonlinear Time Series Analysis. Springer, Berlin (1983)

Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford Univer- sity Press (1990)

. Tong, H., Lim, K.S.: Thresold autoregression, limit cycles and cyclical data. JRSS B 42, 245–292 (1980)

Tran, T.V., Yang, B.-S., Tan, A.C.C.: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems. Expert Syst. Appl. 36(5), 9378–9387 (2009)

Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: forecasting the future and understanding the past. Addison Wesley, Harlow (1994)

Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA (1974)


  • There are currently no refbacks.





About IJC | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJC is published by (GSSRR).