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Abstract 

Binary question answering is central to many real-world applications of large language models (LLMs), such as 

fact-checking or decision-making support. Yet, despite its prevalence and the high stakes of getting a binary 

judgment wrong (where an error yields the exact opposite outcome), there are no recent comprehensive 

benchmarks dedicated to evaluating LLM behavior on this task. To address this gap, we introduce a unified 

benchmark for assessing binary QA across three dimensions: performance, bias, and consistency. The benchmark 

is supported by a five-domain dataset augmented with new controlled reformulations of each question, including 

paraphrases, negations, and answer option variations. Across fifteen state-of-the-art LLMs, we find strong overall 

performance on the task, with larger and reasoning-optimized models showing better results than the smaller 

variants. At the same time, we observe pervasive No-leaning bias, universally weak consistency when handling 

semantically opposite questions, and substantial cross-domain variation. Reading comprehension and multi-hop 

reasoning topics are handled reliably, whereas numerical reasoning, ethical judgment, and, especially, translation 

evaluation remain challenging. These findings reveal both the strengths and shortcomings of current LLMs on 

binary QA, providing researchers with a basis for targeted future improvements while also helping practitioners 

make informed choices when deploying the models in binary decision contexts. 

Keywords: Benchmarking; Bias; Binary Question Answering; Consistency; Large Language Models; 
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1. Introduction 

1.1. Problem Description 

Large language models (LLMs) are increasingly integrated into everyday workflows, powering tools used for 

drafting content, task automation, and even decision support. Many of these interactions ultimately require the 

model to resolve a binary question, such as whether a statement is correct or whether a user should take a particular 

action. Therefore, their ability to answer Yes/No reliably becomes an essential component of effective 

downstream system behavior and user trust. 

Binary questions, however, present a unique challenge because they compress the decision space into only two 

polar opposite outcomes: Yes or No. In borderline cases, where evidence is ambiguous or phrasing is vague, the 

system must still commit to a single categorical answer, even when its underlying uncertainty is high. This 

challenge is further compounded by the fact that LLMs are inherently statistical systems: their outputs reflect the 

patterns and biases present in their training data. When applied to binary question answering, these tendencies 

may surface in critical ways. 

This raises several practical questions for real-world deployment. How accurate are LLMs when making binary 

judgments? Do they reliably preserve their answers when binary questions are paraphrased or otherwise changed? 

And do they exhibit inherent tendencies, such as being more inclined to say No or Yes, that could systematically 

skew outcomes? Understanding these behaviors is crucial for designing safe and predictable LLM-based systems. 

Yet, to the best of our knowledge, there is currently no unified benchmark to make this assessment. This paper 

addresses this gap by introducing the first systematic, multi-dimensional evaluation framework that jointly 

measures performance, bias, and consistency of LLMs on the binary question answering task. To support this 

framework, we assemble a curated dataset of 1,000 cross-domain Yes/No questions, augmented with paraphrases 

and structured negations, to test LLM behavior in various contexts. We then apply the framework across 15 state-

of-the-art models to provide a transparent snapshot of current models’ binary QA abilities and patterns. 

All in all, this work offers a new, comprehensive benchmark designed specifically to evaluate binary QA behavior 

in LLMs. It establishes a foundation for greater understanding of AI systems that rely on these judgments and a 

clear roadmap for necessary LLM improvements. 

1.2. Related Work 

In the past few years, the rapid expansion of LLM capabilities has driven a corresponding surge in evaluation 

benchmarks, supporting quantitative assessment of these models. A recent meta-analysis by Ni and colleagues 

[1] cataloged 283 benchmarks spanning general-purpose evaluations, domain-specific assessments, and target-

specific tasks. Notably, despite its breadth, the survey did not identify any benchmarks explicitly dedicated to 

binary question answering (binary QA). This suggests that, although binary decisions are deeply embedded in 

real-world applications, they remain an under-examined part within the LLM evaluation landscape. And although 

there are some earlier datasets that focus on Yes/No questions (most prominently, BoolQ [2]), they remain rare 

and insufficient to support systematic benchmarking of binary decision-making across diverse scenarios. 
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This absence is increasingly important as emerging work reveals that binary formats introduce systematic biases 

in LLM behavior that can meaningfully distort model outputs in downstream applications. Recent work by Yu 

and colleagues [3] demonstrated the existence of negative bias in LLMs (specifically, in mathematical and logical 

reasoning tasks) through the introduction of the Negative Attention Score (NAS). Using NAS, they identified 

dedicated, query-agnostic negative attention heads that disproportionately attend to negative tokens in a prompt 

during binary decision tasks. They showed that this increased focus on negative tokens is correlated with a higher 

confidence in the negative answer. In other words, LLMs tend to output negative responses more frequently and 

with greater confidence, while being more cautious with positive responses. This leads to a skewed, risk-averse 

decision behavior detrimental in scenarios that require balanced Yes/No judgments. 

Lu and colleagues [4] extended this mechanistic view by demonstrating that the binary format itself (i.e., 

‘Yes/No’) significantly amplifies negative bias relative to continuous format (i.e., ‘on a scale from X to Y’), with 

consistent effects observed across value judgments and sentiment analysis tasks. Further strengthening the 

empirical evidence, Braun conducted experiments on legal texts, showing that LLMs, once again, display bias 

towards choosing No [5]. Similarly, Cheung and colleagues shared observations of LLMs preferring No in moral 

dilemmas and even flipping their decision based on how the question was worded (i.e., answering No even if the 

reworded question suggested the opposite choice) [6]. 

This pattern of changing the answer suggests that bias in binary judgment surfaces together with broader LLM 

consistency issues, which have been observed on a variety of tasks. However, in a binary scenario, their 

implications are especially critical, as inconsistency does not just shift a nuance in response but can invert the 

decision entirely. For this reason, we briefly review prior findings on LLM inconsistency here. 

An early consistency benchmark, BECEL [7], showed that traditional language models (e.g., BERT, T5) often 

violate logical relations across semantically paraphrased, negated, symmetric, and transitive variants of the same 

input, with negation being especially challenging. That is, when logically equivalent forms of a question are 

presented, the model’s predictions can diverge significantly, revealing fundamental instability in its reasoning. 

Later analysis of ChatGPT and GPT-4 confirmed that although improvements have been made, the models 

continue to make mistakes that violate logical properties, with considerable frequency [8]. Similar findings have 

been made by Ahn and Yin, who observed inconsistency in LLMs handling of opposite prompts [9], and Atil and 

colleagues who observed inconsistencies in LLMs responding to the same prompt several times [10]. Moreover, 

Labruna and colleagues demonstrated that in binary question answering, models may change their selection solely 

due to the ordering of response options (especially in high uncertainty situations) [11]. 

Taken together, these findings reveal that binary decision-making is a vulnerable area for current LLMs. It is 

shaped by systematic negative bias and further weakened by inconsistencies that can invert a model’s decision 

under even small input changes. Yet, despite the clear practical importance of binary judgments and the growing 

evidence that LLMs struggle with them, no existing benchmark is designed to systematically evaluate this 

capability. This gap underscores the need for a dedicated, comprehensive framework for assessing LLM behavior 

on binary QA that jointly measures performance, bias, and consistency, to enable robust comparisons across 

models and guide progress in future LLM development. In this paper, we propose such a framework. 
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2. Materials and Methods 

Our approach centers on constructing a comprehensive multi-domain binary question answering dataset, 

augmenting this dataset with systematic reformulations, and deploying a standardized evaluation protocol for it. 

2.1. Main Evaluation Dataset 

To capture a broad range of binary question answering settings, we constructed a 1,000-sample dataset, spanning 

five domains: reading comprehension, multi-hop reasoning, numerical reasoning, machine translation error 

detection, and ethical judgment. Each domain contributes 200 items. All samples were normalized to a binary 

Yes/No format, with label distributions balanced within each domain (i.e., 100 Yes samples and 100 No samples). 

Below, we describe the sourcing and transformation process for each domain in detail. 

Reading comprehension. We randomly sampled 200 instances from the BoolQ dataset [2]. This is a question 

answering dataset that contains naturally occurring binary questions. Each question can be answered by extracting 

information from the associated passage and does not require complex reasoning. The only transformation applied 

to this data was converting the True/False labels to Yes/No. The class balance was enforced by sampling an equal 

number of Yes and No items. 

Multi-hop reasoning. We sampled 200 questions from HotpotQA dataset [12]. This dataset is based on 

Wikipedia articles and focuses on the question answering task designed specifically for multi-hop reasoning. Each 

question in the dataset requires integrating information from multiple supporting documents, encouraging systems 

to reason over scattered evidence rather than relying on a single-passage lookup. The dataset includes two subsets: 

‘distractor’, which provides a fixed context of ten paragraphs (two relevant paragraphs and eight distractors), and 

‘full wiki’, which requires retrieval over the paragraphs of the entire Wikipedia corpus. For our experiments, we 

selected items exclusively from the ‘distractor’ subset. To align with our binary classification setting, we included 

only the questions with Yes/No answers, eliminating the need for additional reformulation. All selected questions 

belong to the ‘comparison’ category, which requires comparing two entities along a shared attribute. Of the 200 

examples, exactly 100 had the correct answer Yes, and the other 100 had the correct answer No. Because 

HotpotQA spans multiple difficulty levels, we constructed a balanced sample comprising 20% easy, 30% 

medium, and 50% hard questions within each label group to ensure adequate coverage of the dataset’s challenge 

spectrum. 

Numerical reasoning. We sampled 200 examples from the DROP dataset [13]. This dataset requires a system to 

analyze the provided paragraph, extract relevant information, and perform discrete operations (e.g., addition or 

counting) over it to answer the question. It requires a comprehensive understanding of the context and the ability 

to perform mathematical operations. Because DROP does not inherently contain binary-style questions, we 

manually converted each randomly selected item into a Yes/No format. Questions were reformulated either as 

threshold-based queries (e.g., transforming ‘How many years did Dhanraj Pillay’s career span?’ into ‘Did 

Dhanraj Pillay’s career span over 14 years?’) or as exact number verification queries (e.g., reframing ‘How many 

TD runs were there in the game?’ as ‘Were there 2 TD runs in the game?’). To maintain a balanced label 
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distribution, 100 items were rephrased such that the correct answer was Yes, and 100 such that the correct answer 

was No, with a 50/50 split between threshold and exact number styles within each label category. 

Machine translation error detection. We sampled 200 items from the WMT (Workshop on Machine 

Translation) data [14], specifically the 2020 WMT dataset with new translations from English to German. It 

contains human-generated translation error annotations following the MQM (Multidimensional Quality Metrics) 

framework, in which each error is labeled with both a type and a severity level. It requires that the model draw 

on its inherent linguistic knowledge and evaluate whether the target sentence is an appropriate translation of the 

source. For our purposes, we simplified the labeling scheme by retaining only the binary presence or absence of 

errors, disregarding type and severity. Given that translation error detection is somewhat subjective, we only 

included samples where all annotators agreed about the presence/absence of an error in the segment. Each sample 

was then converted into a Yes/No question of the form ‘Is there an error in the translation?’, where the 

corresponding passage contained the translation to be evaluated. If the annotators agreed on the presence of an 

error in the segment, the correct answer would be Yes; otherwise, No. We included 100 segments with an error 

and 100 segments with no errors. 

Ethical judgment. We curated 200 scenarios from the ETHICS dataset [15]. It includes subsets that require the 

model to make judgments regarding justice, common sense, deontology, utilitarianism, and virtue. For our dataset, 

we only included common sense and justice subtypes (100 samples of each), as these categories reflect forms of 

everyday moral judgment that LLMs are likely to have acquired during pretraining. To align these scenarios with 

our binary framework, we reformulated each item into a Yes/No query. Justice scenarios were posed as ‘Is this 

fair/just according to ordinary morality in usual circumstances?’, while common sense scenarios were phrased 

as ‘Is this acceptable according to ordinary morality in usual circumstances?’. Within each subset, we balanced 

the labels by ensuring a 50/50 distribution of Yes and No answers, for a total of 100 Yes and 100 No samples. 

2.2. Dataset Reformulations 

To evaluate the consistency of model outputs, we generated several controlled reformulations for each question 

in the dataset. These variations modify the form of the question while preserving its underlying meaning and 

ground-truth label (or, in the case of negative reformulations, intentionally reversing the label to reflect the logical 

change). To minimize unintended sources of variance, each reformulation type followed a predefined 

transformation pattern. All variants were first produced using GPT-4.1 [16] in a one-shot prompting setup, where 

each reformulation type was illustrated with a single example. The generated rewrites were then manually 

reviewed by the author to ensure correctness. We applied three categories of reformulations: positive question 

reformulations, negative question reformulations, and answer option reformulations. 

Positive question reformulations. These preserve the meaning and the true answer of the original question, while 

introducing controlled variations. These transformations are designed to test whether models remain stable under 

paraphrasing in the form of lexical or stylistic shifts. We applied two types of positive transformations: 

1. Synonym Replacement: substitutes key words or phrases with close equivalents (e.g., ‘Is caffeine found 
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in black tea?' → ‘Is caffeine present in black tea?’) 

2. Politeness/Hedging: incorporates pragmatic markers, such as polite or tentative expressions (e.g., ‘Is 

Paris the capital of France?’ → ‘Would you say Paris is the capital of France?’) 

Negative question reformulations. These create a question with an opposite meaning, thereby requiring the 

correct label to flip. These transformations evaluate whether models can reason accurately under negation and 

stay logically consistent when the same question is framed in a contradictory way. We applied two forms of 

negative transformations: 

1. Contradictory Reformulation: rewrites the question around an opposite hypothesis, including through 

the use of negation words (e.g., ‘Does the sun rise in the east?’ → ‘Does the sun not rise in the east?’) 

2. Explicit ’False’ Framing: adds the explicit negation expression (e.g., ‘Is the moon a star?’ → ‘Is it false 

that the moon is a star?’) 

Answer option reformulations. This reformulation is not applied on a per-question basis but instead changes 

the core prompt uniformly across all examples. Whenever a question is passed to an LLM, we specify the available 

answer options it can return. Therefore, this reformulation examines whether models change their answer solely 

due to the order of the response options presented to them. We evaluated the LLMs on two versions of the prompt, 

one with the Yes/No order (‘Choose one of the following answers: Yes/No’) and one with the No/Yes order 

(‘Choose one of the following answers: No/Yes’). 

2.3. Binary Question Answering Evaluation Framework 

To systematically assess model abilities and patterns in binary question answering, we designed an evaluation 

framework built around four complementary metric groups: Performance, Bias, Consistency, and Cross-Domain 

Stability. The first three categories capture the core aspects of LLM behavior this benchmark set out to measure. 

The Cross-Domain Stability metrics show how much these behaviors vary across different topics, helping us see 

if they are general or domain-dependent. All these components are then combined into a unified Model Binary 

Score (MBS) to make model comparisons more straightforward. 

Performance metrics. Assess the model’s overall effectiveness on the binary question answering task, with all 

metrics computed on the original (non-reformulated) dataset. They determine whether the model is fundamentally 

capable of performing the task and could be useful to generate predictions in a binary setting. 

 F1 (weighted) - an overall quality measure that adjusts for label distribution between Yes and No classes. 

Bias metrics. Quantify whether the model’s performance differs between Yes and No classes, with all metrics 

computed on the original (non-reformulated) dataset. This matters because a model that performs well overall 

may still have divergent results on specific labels, affecting fairness and reliability of the downstream decision-

making. 

 ΔRecall (No - Yes) - difference in recall of the two classes. 
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 ΔPrecision (No - Yes) - difference in precision of the two classes. 

Consistency metrics. Evaluate how consistently a model answers a question when its phrasing is altered in ways 

that do not change its underlying logical meaning; computed using the dataset reformulations described above. 

This matters because a reliable model should not change its decision simply because the question is phrased 

differently. If meaning-preserving reformulations cause the model to switch the answer, this reveals fragility and 

suggests that the model might be relying on superficial patterns rather than genuine reasoning. 

 Positive reformulation consistency (PRC) - measures the frequency with which the answer stays the same 

across multiple semantically equivalent versions of the same question; uses positive question reformulations 

(synonym replacement and politeness/hedging). Equation 1 shows how sample-level positive reformulation 

consistency indicator is calculated, where aj,0 is the model’s answer to the original question j, aj,i is the model’s 

answer to its i-th reformulation of question j, and PRCj = 1 only if answers to all the question variants match 

the original. 

PRCj = 1[𝑎𝑗,𝑖 =  𝑎𝑗,0 ∀ 𝑖 ∈ {1, … , 𝑛} ]        (1) 

Equation 2 shows how the dataset-level PRC score is calculated, where N is the number of samples in the dataset 

and PRCj is the sample-level positive reformulation consistency indicator for question j. 

𝑃𝑅𝐶 =  
1

𝑁
∑ 𝑃𝑅𝐶𝑗

𝑁
𝑗=1           (2) 

 Negative reformulation consistency (NRC) - measures how consistently the model handles question 

negations, i.e., whether it provides the correct opposite answer when the question is rewritten to express the 

contradictory form of the same claim; uses negative question reformulations (contradictory reformulation and 

explicit ‘false’ framing). Equation 3 shows how sample-level negative reformulation consistency indicator is 

calculated. Dataset-level NRC score is calculated in the same way as PRC score but using NRCj indicator instead 

of PRCj indicator. 

NRCj = 1[𝑎𝑗,𝑖 ≠  𝑎𝑗,0 ∀ 𝑖 ∈ {1, … , 𝑛} ]        (3) 

 Answer reformulation consistency (ARC) - measures the frequency with which the model response remains 

consistent when the question stays the same and only the presentation of the answer options is changed; uses 

answer option reformulations (changes in order). It is calculated in the same way as PRC. 

 Self-consistency (SC) - measures the frequency with which the answer stays the same when the identical 

question is asked several times; we ask the same question 3 times to get the measure (note that we kept the 

temperature parameter at 0 to minimize the randomness). It is calculated in the same way as PRC. 

Cross-domain stability metrics. Assess whether a model’s performance, bias, and consistency patterns hold 

across the different domains in our dataset. As each domain poses distinct demands, comparing metric values 

across them reveals whether observed effects are general or tied to specific contexts. This helps distinguish 
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fundamental LLM tendencies from domain-driven phenomena. 

 Stdev of the performance metrics - provides a quantitative measure of how widely performance varies 

between domains; for each metric, we compute its value separately for each domain and then calculate 

the standard deviation across these values. 

 Stdev of the bias metrics - provides a quantitative measure of how widely bias varies between domains; 

for each metric, we compute its value separately for each domain and then calculate the standard 

deviation across these values.  

 Stdev of the consistency metrics - provides a quantitative measure of how widely consistency varies 

between domains; for each metric, we compute its value separately for each domain and then calculate 

the standard deviation across these values. 

2.4. Composite Model Binary Score 

We combine all previously defined metrics into a single composite measure, Model Binary Score (MBS), which 

provides a concise overall assessment of model behavior on the binary task. While the individual metrics reveal 

specific strengths and weaknesses, the composite score consolidates performance quality, bias level, consistency 

under reformulations, and cross-domain stability into one value. This allows all key dimensions of binary question 

answering quality to be represented collectively in a single summary measure. To create MBS, each metric is first 

normalized to a common 0–100 scale based on its theoretical minimum and maximum values, where higher values 

always indicate better performance. Each normalized metric is then weighted according to its predefined 

importance, and the weighted values are added together to produce the composite score.  

Metric normalization. Because different metrics have different natural ranges and interpretations, we apply 

range-specific normalization rules as described below: 

 Symmetric metrics on -1 to 1 scale - metrics with the range of [−1,1], where 0 represents the best case 

and −1/1 represent the worst case (ΔRecall, ΔPrecision) are normalized as: 𝑀̃ =  100 ∗ (1 − |𝑀|) 

  Increasing metrics on 0 to 1 scale - metrics bounded by [0,1], where larger values correspond to better 

performance (F1, PRC, NRC, ARC, SC) are normalized as: 𝑀̃ =  100 ∗ 𝑀 

 Decreasing metrics on 0 to 1 scale - metrics bounded by [0,1], where smaller values indicate better 

performance (standard deviation of ΔRecall, ΔPrecision) are normalized by inverting the scale: 𝑀̃ =

 100 ∗ (1 − 𝑀) 

 Decreasing metrics on 0 to 0.5 scale - metrics with the range of [0, 0.5], where 0 is the best and 0.5 is 

the worst (standard deviation of F1, PRC, NRC, ARC, SC) are normalized as: 𝑀̃ =  100 ∗ (1 − 2𝑀) 

Weight assignment. Each normalized metric contributes to the composite Model Binary Score according to a 

predefined weighting scheme that reflects the relative importance of the four major evaluation components. Below 

are the weights we selected for the experiments based on our assessment of the criticality of each aspect: 

 Performance metrics (40%) - represent the core model capability on the binary task and therefore 
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receive the largest share of the overall weight (all assigned to F1, the single metric in this category). 

 Bias metrics (20%) - capture a core, but less important evaluation dimension. The total allocation is 

distributed equally between ΔRecall (10%) and ΔPrecision (10%). 

 Consistency metrics (30%) - constitute the second most important category as they capture model 

reliability under variation occurring with normal use. This weight is distributed equally among all 

metrics in the category (i.e., 7.5% for each). 

 Cross-domain stability (10%) - receive the remaining part of the score. To keep the influence of each 

cross-domain metric aligned with the importance of the corresponding core metric, each stdev weight is 

assigned proportionally to the weight of its associated main metric. In other words, if wi is the weight of 

a core metric Mi, and the total weight of all cross-domain metrics is 0.1, then the weight of its cross-

domain stability metric is: 𝑤𝑠𝑡𝑑𝑒𝑣 𝑖 = 0.1 ∗
𝑤𝑖

1−0.1
 

2.5. Large Language Models Evaluated 

We applied the benchmark to evaluate a set of 15 LLMs. To ensure relevance, we used the most recent releases 

from each model family, providing an up-to-date snapshot of current LLM capabilities. The selection spans 

multiple sizes and includes both open-weight and closed-weight models. Whenever available, we also included 

reasoning-optimized variants. The chosen models were: 

1. o3, OpenAI: Closed-weight, reasoning-optimized model; state-of-the-art for structured reasoning [17]. 

2. GPT-4o, OpenAI: Large, closed-weight model; flagship and highly performant general-purpose system 

Reference [18]. 

3. GPT-4o mini, OpenAI: Small, closed-weight model; cost-efficient and fast variant of GPT-4o [19]. 

4. Gemini 2.5 Pro, Google: Large, closed-weight model; Google’s high-capability flagship system with 

strong reasoning capabilities [20]. 

5. Gemini 2.5 Flash, Google: Small, closed-weight model; efficient, fast-response variant of the Pro model 

Reference [20]. 

6. Claude Opus 4.1, Anthropic: Closed-weight, reasoning-focused model; strongest in Anthropic’s lineup 

for specialized reasoning tasks [21]. 

7. Claude Sonnet 4.5, Anthropic: Large, closed-weight model; Anthropic’s main general-purpose system 

Reference [22]. 

8. Claude Haiku 4.5, Anthropic: Small, closed-weight model; lightweight, fast variant of Claude [23]. 

9. Magistral Medium 1.2, Mistral AI: Medium-sized model optimized for reasoning tasks, with weights 

provided on request [24]. 

10. Mistral Medium 3.1, Mistral AI: Mistral’s main frontier-class model with weights available upon 

request; medium-sized and designed to deliver strong general-purpose performance [25]. 

11. Mistral Small 3.2, Mistral AI: Small, open-weight model; efficient and publicly accessible [26]. 

12. Llama 4 Maverick, Meta AI: Large, open-weight model; the latest addition by Meta with a best-in-

class performance-to-cost ratio [27]. 

13. Llama 3.1 405B Instruct, Meta AI: Large, open-weight model; top-tier performance with broad 
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capabilities [28]. 

14. Llama 3.3 70B Instruct, Meta AI: Medium-sized, open-weight model; delivers strong performance, 

even approaching the 405B variant in some cases [28]. 

15. Llama 3.1 8B Instruct, Meta AI: Small, open-weight model; Meta’s efficient general-purpose system 

Reference [28]. 

In addition, we evaluated a random baseline that predicts Yes and No with equal probabilities of 1/2, offering a 

simple chance-level reference for comparing various model performance results to. 

3. Results 

3.1. General LLM Trends 

 

Overall, as shown in Table 1, all LLMs in the benchmark performed well on the binary question answering task, 

substantially outperforming the random baseline on the calculated metrics. The main outlier is Llama 3.1 8B, 

which achieved the lowest scores across most dimensions, although still performed above chance. Importantly, 

this model is likely the smallest in the set. For example, Mistral Small 3.2, another small open-weight model, is 

3 times larger, with 24B parameters [26]. While the exact sizes of the OpenAI, Google, and Anthropic models 

are not publicly disclosed, it is reasonable to assume that even their small offerings are considerably larger as 

well. This raises the possibility that model size plays a role in model behavior on the binary QA task, an idea we 

explore further in a separate section. For the weighted F1 statistic, most models achieved scores greater than 0.80, 

reflecting solid overall performance on the task. Nevertheless, the absence of near-perfect results indicates that 

the task retains inherent difficulty and that performance can still be improved. 

 

Table 1: Overall benchmark results, core metrics (best 2 highlighted) 
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In addition, for nearly all models (except for Magistral Medium 1.2 and Llama 3.1 405B) we observe an imbalance 

between the Yes and No classes, where the No class shows higher recall but lower precision than the Yes class. 

This pattern suggests that, across the board, current LLMs (especially the smaller variants) have a bias towards 

answering No more readily than Yes when faced with binary decision-making scenarios. 

In terms of consistency, the models show strong self-consistency. When the same question was repeated three 

times, they almost always produced the same output, with all the models reaching 90% on the metric and many 

exceeding 97%. Interestingly, the reasoning-optimized models (i.e., o3, Magistral Medium 1.2) showed slightly 

lower self-consistency, likely because their greater flexibility and broader search space introduced more variation 

in more ambiguous cases. The LLMs also demonstrated high consistency with respect to answer option 

reformulations. When the order of answer options was changed, all the models maintained consistency in over 

93% of cases, with most being consistent in 95%+ cases. This indicates that simple ordering shifts have minimal 

impact on their binary predictions. Consistency under positive question reformulations, such as replacing words 

with synonyms or adding polite expressions, was also quite good, but noticeably weaker. Most models remained 

consistent in the mid-to-high 80s range, with only the strongest reaching around 90% stability, indicating that 

even small shifts in wording can influence their outputs. Answering consistently to negative reformulations, such 

as contradictory questions or explicit ’false’ framings, proved to be the most challenging. In these cases, models 

were expected to flip the returned label while preserving the same underlying logical judgment. However, most 

models did not do this consistently. They provided the correct logical answer in only about 67–77% of cases, with 

several performing even lower. Only two models achieved notably higher consistency, reaching 86%–87% on 

this metric (o3, Gemini 2.5 Pro), highlighting that handling negation remains a substantial weakness for current 

LLMs. 

Finally, examining the standard deviation of each metric across domains (shown in Table 2) reveals a clear 

pattern: most measures shift noticeably depending on the domain. For bias metrics, the variation can even be large 

enough for the direction of the effect to reverse entirely, with some domains showing a move from a No-leaning 

tendency to a Yes-leaning one. In contrast, consistency under repeated questioning and answer option 

reformulation remains largely strong across models and domains. Overall, these results show that aggregate scores 

can mask important cross-domain differences, which we examine in more detail in a dedicated section. 
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3.2. Overall Best Models 

Taking all the metrics together and looking at the cumulative score, Claude Opus 4.1 and Gemini 2.5 Pro show 

the best results, with 91.0 and 90.5 MBS points, respectively. In terms of performance, both models achieve the 

highest overall F1 score on the task (0.88). When it comes to bias, Claude Opus 4.1 shows the better balance 

between recall and precision (ΔRecall 0.02; ΔPrecision –0.01). Gemini 2.5 Pro exhibits a slightly stronger bias 

(ΔRecall 0.05; ΔPrecision –0.04) but still maintains a reasonable Yes/No balance in responses. Across the 

consistency dimensions, the models behave similarly, providing stable responses when asked the same question 

multiple times (SC), when presented with different answer option formats (ARC), and when given semantically 

equivalent questions (PRC). Claude Opus 4.1 is somewhat more consistent on these dimensions (SC 0.98 vs. 

0.95; ARC 0.98 vs. 0.96; PRC 0.91 vs. 0.90). In contrast, Gemini 2.5 Pro performs markedly better when handling 

negations (NRC), scoring 0.86 compared to Claude’s 0.77. When looking across domains, Gemini 2.5 Pro 

demonstrates the most uniform performance, showing less variation across the different areas tested. Claude Opus 

4.1, although strong overall, exhibits more domain-by-domain variability, particularly in consistency metrics such 

as NRC (stdev of 0.12), suggesting greater fluctuation in handling negative reformulations across contexts. 

Overall, both models are strong choices for binary question answering, delivering reliable and high-quality 

performance. Claude Opus 4.1 may be the better option when minimizing Yes/No bias is critical, while Gemini 

2.5 Pro is preferable for scenarios involving frequent negations or a wider variety of binary question domains. 

3.3. Importance of Size and Reasoning Optimization 

Figure 1 shows a consistent pattern across all model families: larger models and reasoning-optimized variants 

achieved higher composite MBS scores. Reasoning-oriented models, such as OpenAI’s o3 or Anthropic’s Claude 

Table 2: Overall benchmark results, standard deviation of the metrics (best 2 highlighted) 
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Opus 4.1, appear at the top of the intra-family rankings. This makes sense, given that many questions in the 

benchmark required a degree of reasoning about the presented information, making models optimized for this 

better positioned to perform well on the task. Moreover, we can see that model size correlates reliably with 

performance: the largest models outperform medium and small variants, while the smallest models fall behind. 

This trend appears across all the families, indicating that it is not an artifact of a single model provider but a 

general property. Taken together, these results show that both scale and reasoning specialization enhance LLM 

ability to answer binary questions reliably, and smaller, non-reasoning models are facing systematic limitations 

on this task. 

 

3.4. Cross-domain Breakdown 

As seen in Table 3, performance of the LLMs on the binary QA task differs substantially between domains 

included in our benchmark. The models perform strongly on reading comprehension and multi-hop reasoning. 

Numerical reasoning shows a mixed but generally solid pattern, with larger and reasoning-optimized models 

mostly achieving higher F1 scores. Ethics falls into a mid-range band, with the notable exception of closed-source 

reasoning models (o3 and Claude Opus 4.1), which reach or exceed 0.90 F1. The translation quality evaluation is 

where the models struggle the most, with F1 scores largely in the high-60s to low-70s range. Overall, the hardest 

domains ended up being those that require capabilities beyond simple reasoning over the information provided in 

the prompt. Numerical reasoning adds the need for discrete computational skills on top of logical inference. 

Ethical questions rely on a sufficiently rich, norm-aligned world model to answer appropriately. Translation error 

detection calls for additional cross-lingual interpretation abilities and sensitivity to linguistic details. The extra 

requirements make these domains substantially more challenging than those based on factual retrieval and basic 

structured reasoning. And, as our analysis reveals, current LLMs are not yet equipped to handle them reliably in 

binary settings. 

 

Figure 1: Model Binary Score comparison by LLM family and type 
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When it comes to bias, the cross-domain patterns in Table 4 show that most models tend to favor No over Yes, 

with only a few isolated Yes-leaning exceptions emerging in specific model–domain combinations. The 

magnitude of this No tendency, however, varies considerably across domains. Translation shows the strongest 

imbalance, followed by ethics and numerical reasoning. At the same time, some domains, particularly multi-hop 

reasoning, remain comparatively well balanced. These results suggest that although models generally tend to 

choose No more often, the strength of this inclination (and, at times, even its existence) is highly domain 

dependent. 

 

Table 3: Cross-domain performance metric, F1 
( 0.90 dark green; 0.89-0.80 green; 0.79-0.70 yellow; 0.69-0.60 red;  0.59 dark red) 

 

Table 4: Cross-domain bias metrics 
(orange: No-leaning; purple: Yes-leaning; white: balanced/minimal difference) 
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For the cross-domain consistency analysis, we included only the positive (PRC) and negative (NRC) 

reformulation aspects. As the LLMs showed high performance with low variance in self- (SC) and answer 

reformulation (ARC) consistency, these dimensions were less valuable to review in detail. Table 5 shows clear 

domain-dependent patterns in positive reformulation consistency (PRC) that align with earlier per-domain 

findings. The models are most stable in reading and multi-hop reasoning, where they tend to return the same 

answer even when exposed to different paraphrased versions of the same question. Stability drops in numerical 

reasoning, translation evaluation, and ethical judgment, though a few models stand out as exceptions (e.g., Mistral 

Medium 3.1 on translation). For NRC, we have already established the overall difficulty that the models face with 

handling negations. Interestingly, the table shows that consistency under this type of reformulation varies more 

by model than by domain. Moreover, in many cases, a domain that one model handles the best, another model 

handles the worst. For example, Gemini 2.5 Flash has the highest NRC of 0.90 in numerical reasoning, while for 

GPT-4o mini this is the most challenging domain with NRC of 0.41. This suggests that negative reformulation 

consistency depends less on domain properties and more on model-specific strengths and weaknesses. 

To consolidate all the cross-domain findings, Table 6 summarizes the general trends we observed across LLMs. 

On reading comprehension and multi-hop reasoning, the LLMs consistently achieve the strongest results across 

criteria, while on ethical judgment they show mid-level performance, and struggle on translation evaluation. 

Numerical reasoning displays substantial variability, with outcomes highly model dependent. Negative 

reformulation consistency is excluded from this summary, as performance on this metric was uniformly weak 

across models and did not reveal meaningful domain-level distinctions. 

 

 

Table 5: Cross-domain consistency metrics 
( 0.90 dark green; 0.89-0.80 green; 0.79-0.70 yellow; 0.69-0.60 red;  0.59 dark red) 
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4. Discussion 

4.1. Discussion of the Results 

This study set out to provide a new multi-dimensional assessment of how contemporary large language models 

handle binary question answering. Our evaluation of 15 latest models across five domains shows that while 

modern LLMs are generally competent in binary QA, this competence is accompanied by non-negligible patterns 

of No-leaning bias and inconsistency, especially under negation. This indicates that while LLM can be useful in 

binary QA settings, they should be applied to the task with caution. 

Our findings complement and extend recent studies of binary bias in LLMs. Lu and colleagues [4], Braun [5], 

and Cheung and colleagues [6] provide empirical evidence of No-leaning behavior of some LLMs in value 

judgment, sentiment analysis, legal texts, and moral decision-making, while Yu and colleagues [3] highlight 

“negative attention heads” as a possible architectural explanation for this phenomenon. The present study 

replicates these observations at a larger scale, spanning more domains and models, and showing that this No bias 

is not limited to specific topics or model families but is a widespread feature of current LLM behavior. At the 

same time, by showing that most systems achieve 0.80+ F1 score on binary QA, we demonstrated that this bias 

co-exists with strong overall task performance rather than arises from general incompetence. In addition, the 

consistency dimension of our framework situates binary QA within the broader landscape of LLM instability 

documented in earlier work. Prior research highlighted various LLM consistency issues, such as failure to 

preserve logical relations across paraphrases [8] and meaning reversals [9], sensitivity to prompt formatting [11], 

and, though less common, tendency to provide different answers when the same query is repeated [10]. Our 

consistency analysis advances this line of inquiry by systematically measuring these instabilities specifically in 

the context of binary QA. We find that models are almost perfectly stable under repetition and answer format 

(order) changes, moderately stable under paraphrasing, but quite fragile when handling negative reformulations. 

These results reaffirm earlier findings while also demonstrating meaningful progress: in binary QA, contemporary 

LLMs now handle repetitions and formatting changes with high reliability yet remain sensitive to rephrasing and, 

especially, negations. 

Importantly, our cross-domain analysis also highlights that binary QA is not a single, uniform skill. The evaluated 

models handle reading comprehension and multi-step reasoning well, while numerical reasoning questions and 

ethical decisions are harder but still manageable. Translation error detection stands out as the weakest area, 

suggesting that cross-lingual evaluation places additional strain on model capabilities and urgently needs further 

LLM improvements. Notably, across domains, greater task difficulty seems to amplify all model weaknesses at 

Table 6: Cross-domain LLM behavior summary 
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once: the harder the task and the lower the performance, the stronger the No-leaning bias and the more frequent 

the reformulation inconsistencies. All in all, these differences make clear that LLM behavior on binary QA must 

be evaluated in the context of specific domains rather than assumed to reflect a universal level of competence. 

Finally, our benchmark has revealed that, when evaluated holistically, reasoning-optimized and larger models 

deliver the strongest overall binary QA performance. Their consistently higher composite scores point to a 

meaningful advantage in decision reliability, reinforcing the idea that scale and specialized reasoning training are 

key drivers of dependable binary QA behavior, especially in reasoning-dependent contexts. 

Taken together, these results have several implications for practitioners who rely on LLMs for binary decision 

support: 

 Treat No as a conservative default. As most models show higher recall but lower precision on No 

class, this indicates that No tends to be over-produced relative to the true label distribution. This implies 

that false positives (false Yes) in binary QA may be relatively rare, but false negatives (false No) will be 

more common. System designers should therefore treat No as an indication of caution and consider 

downstream workflows that allow for human verification when No comes with a high cost of error (e.g., 

application or health screenings). 

 Be cautious with negative phrasings. Our negative reformulation consistency metric shows that models 

often fail to flip their answer consistently when the question meaning is inverted through, for example, 

use of negation words and expressions. For system designers who control how binary prompts are 

formulated, it is safer to avoid constructions that rely on negation, as these increase the likelihood of 

inconsistent answers. When negative wording truly cannot be avoided, choosing models with stronger 

negation consistency (e.g. o3, Gemini 2.5 Pro) becomes especially important.  

 Prefer larger and/or reasoning-optimized models for critical binary decisions. The association 

between model size, reasoning optimization, and composite binary score suggests that, where resources 

permit, larger and/or reasoning-tuned models should be used for high-impact binary question answering 

tasks. Smaller models, while attractive for cost and latency reasons, often show both lower F1 and 

amplified biases and inconsistency. A practical deployment strategy is to use a lightweight model for 

triage: determining whether the input is genuinely a binary decision task and then routing confirmed 

binary questions to a larger, more reliable model. This approach balances efficiency with accuracy while 

reducing the risk that sensitive decisions are made by weaker models.  

 Benchmark models for your specific scenarios before deployment. Reading comprehension and 

multi-hop reasoning questions in our benchmark were handled reliably by many models, while 

translation evaluation and ethical judgement questions were marked by far weaker performance and 

more inconsistencies. Practitioners should avoid assuming that a model’s results on one binary task or 

specific dataset will transfer to others. Whenever possible, model selection should be based on domain-

specific evaluation, ideally using a framework similar to ours that explicitly measures performance, bias, 

and consistency. 
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4.2. Limitations and Future Work 

Several limitations of our study should be acknowledged. First, although our dataset was sufficiently large to 

draw meaningful conclusions about LLM behavior, it was still modest compared to the diversity of real-world 

binary decision problems. This limitation applies both to the depth of coverage within each domain and to the 

overall breadth of domains represented. Because we observe substantial cross-domain variation in performance, 

bias, and consistency, a broader and more fine-grained dataset could reveal additional patterns not captured in the 

current benchmark. The second limitation concerns the transformations that were required to create the 

benchmark dataset. Some examples (particularly in the numerical reasoning domain) needed manual rewriting, 

while our positive and negative reformulations relied on LLM-generated paraphrases. Although each step was 

standardized and carefully reviewed, any transformation process can introduce subtle shifts in difficulty or 

ambiguity. As a result, the dataset might have contained small inconsistencies in complexity across items. 

However, given the scale of the dataset and the rigorous human review checks implemented during its generation, 

these effects are unlikely to have been large enough to alter the overall trends we observed. Finally, although we 

tested a wide range of current models, the LLM landscape is evolving quickly. New releases may show different 

behavior, so the results presented here should be viewed as a snapshot of present capabilities rather than a 

definitive ranking. 

Our benchmark also points to several clear directions for future work. First, expanding it to additional domains 

(such as clinical decision-making or legal compliance) would help test whether the binary QA patterns observed 

in this study generalize to other settings. A second avenue is multilingual and cross-lingual evaluation. Our 

findings in translation evaluation suggest that reasoning across languages poses unique challenges, so building a 

fully multilingual binary QA benchmark would allow us to further examine model behavior on the task in 

multilingual contexts, potentially revealing new important model weaknesses. Beyond broader coverage, adding 

uncertainty measures to the benchmark could provide a deeper insight into LLM consistency behavior. It would 

be useful to see if the areas of greater instability align with points of increased model uncertainty, thereby 

clarifying whether inconsistencies reflect areas of LLM ambiguity or indicate deeper reasoning limitations. Future 

work should also move from diagnosing the issues to mitigating them, involving both training and inference time 

strategies, and focusing on the most problematic areas first (i.e., consistency under negation). This extension 

would help translate this benchmark from an analytic tool into a foundation for building more robust binary 

decision systems. 

5. Conclusion 

In this paper, we introduced a new dedicated benchmark for comprehensively evaluating large language models 

on the binary question answering task. It combines performance, bias, and consistency into a single, interpretable 

score and is supported by a five-domain dataset augmented with systematic reformulations. Applied to fifteen 

latest models, this benchmark shows that, overall, LLMs are good binary reasoners, with larger and reasoning-

optimized models reliably outperforming smaller ones. Yet, LLMs’ competence is accompanied by a No-leaning 

bias, fragility under negative question reformulations, and clear domain-dependent variations (with especially 

pronounced weaknesses in translation evaluation).  
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These findings have direct implications for the design of LLM-based decision systems. In practice, No should be 

treated as a conservative default; prompts should avoid negative phrasings; and models should be selected and 

optimized on a per-domain basis, with a preference for larger and reasoning-optimized ones in critical binary 

contexts. By sharing the benchmark, we aim to provide a reusable framework for tracking progress in improving 

LLM performance and tackling bias and inconsistency in binary question answering settings. 
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