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Abstract

Binary question answering is central to many real-world applications of large language models (LLMSs), such as
fact-checking or decision-making support. Yet, despite its prevalence and the high stakes of getting a binary
judgment wrong (where an error yields the exact opposite outcome), there are no recent comprehensive
benchmarks dedicated to evaluating LLM behavior on this task. To address this gap, we introduce a unified
benchmark for assessing binary QA across three dimensions: performance, bias, and consistency. The benchmark
is supported by a five-domain dataset augmented with new controlled reformulations of each question, including
paraphrases, negations, and answer option variations. Across fifteen state-of-the-art LLMSs, we find strong overall
performance on the task, with larger and reasoning-optimized models showing better results than the smaller
variants. At the same time, we observe pervasive No-leaning bias, universally weak consistency when handling
semantically opposite questions, and substantial cross-domain variation. Reading comprehension and multi-hop
reasoning topics are handled reliably, whereas numerical reasoning, ethical judgment, and, especially, translation
evaluation remain challenging. These findings reveal both the strengths and shortcomings of current LLMs on
binary QA, providing researchers with a basis for targeted future improvements while also helping practitioners

make informed choices when deploying the models in binary decision contexts.
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1. Introduction

1.1. Problem Description

Large language models (LLMSs) are increasingly integrated into everyday workflows, powering tools used for
drafting content, task automation, and even decision support. Many of these interactions ultimately require the
model to resolve a binary question, such as whether a statement is correct or whether a user should take a particular
action. Therefore, their ability to answer Yes/No reliably becomes an essential component of effective

downstream system behavior and user trust.

Binary questions, however, present a unique challenge because they compress the decision space into only two
polar opposite outcomes: Yes or No. In borderline cases, where evidence is ambiguous or phrasing is vague, the
system must still commit to a single categorical answer, even when its underlying uncertainty is high. This
challenge is further compounded by the fact that LLMSs are inherently statistical systems: their outputs reflect the
patterns and biases present in their training data. When applied to binary question answering, these tendencies

may surface in critical ways.

This raises several practical questions for real-world deployment. How accurate are LLMs when making binary
judgments? Do they reliably preserve their answers when binary questions are paraphrased or otherwise changed?
And do they exhibit inherent tendencies, such as being more inclined to say No or Yes, that could systematically

skew outcomes? Understanding these behaviors is crucial for designing safe and predictable LLM-based systems.

Yet, to the best of our knowledge, there is currently no unified benchmark to make this assessment. This paper
addresses this gap by introducing the first systematic, multi-dimensional evaluation framework that jointly
measures performance, bias, and consistency of LLMs on the binary question answering task. To support this
framework, we assemble a curated dataset of 1,000 cross-domain Yes/No questions, augmented with paraphrases
and structured negations, to test LLM behavior in various contexts. We then apply the framework across 15 state-

of-the-art models to provide a transparent snapshot of current models’ binary QA abilities and patterns.

All inall, this work offers a new, comprehensive benchmark designed specifically to evaluate binary QA behavior
in LLMs. It establishes a foundation for greater understanding of Al systems that rely on these judgments and a

clear roadmap for necessary LLM improvements.

1.2. Related Work

In the past few years, the rapid expansion of LLM capabilities has driven a corresponding surge in evaluation
benchmarks, supporting quantitative assessment of these models. A recent meta-analysis by Ni and colleagues
[1] cataloged 283 benchmarks spanning general-purpose evaluations, domain-specific assessments, and target-
specific tasks. Notably, despite its breadth, the survey did not identify any benchmarks explicitly dedicated to
binary question answering (binary QA). This suggests that, although binary decisions are deeply embedded in
real-world applications, they remain an under-examined part within the LLM evaluation landscape. And although
there are some earlier datasets that focus on Yes/No questions (most prominently, BoolQ [2]), they remain rare

and insufficient to support systematic benchmarking of binary decision-making across diverse scenarios.
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This absence is increasingly important as emerging work reveals that binary formats introduce systematic biases
in LLM behavior that can meaningfully distort model outputs in downstream applications. Recent work by Yu
and colleagues [3] demonstrated the existence of negative bias in LLMs (specifically, in mathematical and logical
reasoning tasks) through the introduction of the Negative Attention Score (NAS). Using NAS, they identified
dedicated, query-agnostic negative attention heads that disproportionately attend to negative tokens in a prompt
during binary decision tasks. They showed that this increased focus on negative tokens is correlated with a higher
confidence in the negative answer. In other words, LLMSs tend to output negative responses more frequently and
with greater confidence, while being more cautious with positive responses. This leads to a skewed, risk-averse

decision behavior detrimental in scenarios that require balanced Yes/No judgments.

Lu and colleagues [4] extended this mechanistic view by demonstrating that the binary format itself (i.e.,
“Yes/No’) significantly amplifies negative bias relative to continuous format (i.e., ‘on a scale from X to Y), with
consistent effects observed across value judgments and sentiment analysis tasks. Further strengthening the
empirical evidence, Braun conducted experiments on legal texts, showing that LLMs, once again, display bias
towards choosing No [5]. Similarly, Cheung and colleagues shared observations of LLMs preferring No in moral
dilemmas and even flipping their decision based on how the question was worded (i.e., answering No even if the

reworded question suggested the opposite choice) [6].

This pattern of changing the answer suggests that bias in binary judgment surfaces together with broader LLM
consistency issues, which have been observed on a variety of tasks. However, in a binary scenario, their
implications are especially critical, as inconsistency does not just shift a nuance in response but can invert the
decision entirely. For this reason, we briefly review prior findings on LLM inconsistency here.

An early consistency benchmark, BECEL [7], showed that traditional language models (e.g., BERT, T5) often
violate logical relations across semantically paraphrased, negated, symmetric, and transitive variants of the same
input, with negation being especially challenging. That is, when logically equivalent forms of a question are
presented, the model’s predictions can diverge significantly, revealing fundamental instability in its reasoning.
Later analysis of ChatGPT and GPT-4 confirmed that although improvements have been made, the models
continue to make mistakes that violate logical properties, with considerable frequency [8]. Similar findings have
been made by Ahn and Yin, who observed inconsistency in LLMs handling of opposite prompts [9], and Atil and
colleagues who observed inconsistencies in LLMs responding to the same prompt several times [10]. Moreover,
Labruna and colleagues demonstrated that in binary question answering, models may change their selection solely
due to the ordering of response options (especially in high uncertainty situations) [11].

Taken together, these findings reveal that binary decision-making is a vulnerable area for current LLMs. It is
shaped by systematic negative bias and further weakened by inconsistencies that can invert a model’s decision
under even small input changes. Yet, despite the clear practical importance of binary judgments and the growing
evidence that LLMs struggle with them, no existing benchmark is designed to systematically evaluate this
capability. This gap underscores the need for a dedicated, comprehensive framework for assessing LLM behavior
on binary QA that jointly measures performance, bias, and consistency, to enable robust comparisons across

models and guide progress in future LLM development. In this paper, we propose such a framework.
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2. Materials and Methods

Our approach centers on constructing a comprehensive multi-domain binary question answering dataset,

augmenting this dataset with systematic reformulations, and deploying a standardized evaluation protocol for it.

2.1. Main Evaluation Dataset

To capture a broad range of binary question answering settings, we constructed a 1,000-sample dataset, spanning
five domains: reading comprehension, multi-hop reasoning, numerical reasoning, machine translation error
detection, and ethical judgment. Each domain contributes 200 items. All samples were normalized to a binary
Yes/No format, with label distributions balanced within each domain (i.e., 100 Yes samples and 100 No samples).

Below, we describe the sourcing and transformation process for each domain in detail.

Reading comprehension. We randomly sampled 200 instances from the BoolQ dataset [2]. This is a question
answering dataset that contains naturally occurring binary questions. Each question can be answered by extracting
information from the associated passage and does not require complex reasoning. The only transformation applied
to this data was converting the True/False labels to Yes/No. The class balance was enforced by sampling an equal

number of Yes and No items.

Multi-hop reasoning. We sampled 200 questions from HotpotQA dataset [12]. This dataset is based on
Wikipedia articles and focuses on the question answering task designed specifically for multi-hop reasoning. Each
question in the dataset requires integrating information from multiple supporting documents, encouraging systems
to reason over scattered evidence rather than relying on a single-passage lookup. The dataset includes two subsets:
‘distractor’, which provides a fixed context of ten paragraphs (two relevant paragraphs and eight distractors), and
“full wiki’, which requires retrieval over the paragraphs of the entire Wikipedia corpus. For our experiments, we
selected items exclusively from the “distractor’ subset. To align with our binary classification setting, we included
only the questions with Yes/No answers, eliminating the need for additional reformulation. All selected questions
belong to the ‘comparison’ category, which requires comparing two entities along a shared attribute. Of the 200
examples, exactly 100 had the correct answer Yes, and the other 100 had the correct answer No. Because
HotpotQA spans multiple difficulty levels, we constructed a balanced sample comprising 20% easy, 30%
medium, and 50% hard questions within each label group to ensure adequate coverage of the dataset’s challenge

spectrum.

Numerical reasoning. We sampled 200 examples from the DROP dataset [13]. This dataset requires a system to
analyze the provided paragraph, extract relevant information, and perform discrete operations (e.g., addition or
counting) over it to answer the question. It requires a comprehensive understanding of the context and the ability
to perform mathematical operations. Because DROP does not inherently contain binary-style questions, we
manually converted each randomly selected item into a Yes/No format. Questions were reformulated either as
threshold-based queries (e.g., transforming ‘How many years did Dhanraj Pillay’s career span?’ into ‘Did
Dhanraj Pillay’s career span over 14 years?’) or as exact number verification queries (e.g., reframing ‘How many

TD runs were there in the game?’ as ‘Were there 2 TD runs in the game?’). To maintain a balanced label
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distribution, 100 items were rephrased such that the correct answer was Yes, and 100 such that the correct answer

was No, with a 50/50 split between threshold and exact number styles within each label category.

Machine translation error detection. We sampled 200 items from the WMT (Workshop on Machine
Translation) data [14], specifically the 2020 WMT dataset with new translations from English to German. It
contains human-generated translation error annotations following the MQM (Multidimensional Quality Metrics)
framework, in which each error is labeled with both a type and a severity level. It requires that the model draw
on its inherent linguistic knowledge and evaluate whether the target sentence is an appropriate translation of the
source. For our purposes, we simplified the labeling scheme by retaining only the binary presence or absence of
errors, disregarding type and severity. Given that translation error detection is somewhat subjective, we only
included samples where all annotators agreed about the presence/absence of an error in the segment. Each sample
was then converted into a Yes/No question of the form ‘Is there an error in the translation?’, where the
corresponding passage contained the translation to be evaluated. If the annotators agreed on the presence of an
error in the segment, the correct answer would be Yes; otherwise, No. We included 100 segments with an error
and 100 segments with no errors.

Ethical judgment. We curated 200 scenarios from the ETHICS dataset [15]. It includes subsets that require the
model to make judgments regarding justice, common sense, deontology, utilitarianism, and virtue. For our dataset,
we only included common sense and justice subtypes (100 samples of each), as these categories reflect forms of
everyday moral judgment that LLMs are likely to have acquired during pretraining. To align these scenarios with
our binary framework, we reformulated each item into a Yes/No query. Justice scenarios were posed as ‘Is this
fair/just according to ordinary morality in usual circumstances?’, while common sense scenarios were phrased
as ‘Is this acceptable according to ordinary morality in usual circumstances? ’. Within each subset, we balanced

the labels by ensuring a 50/50 distribution of Yes and No answers, for a total of 100 Yes and 100 No samples.

2.2. Dataset Reformulations

To evaluate the consistency of model outputs, we generated several controlled reformulations for each question
in the dataset. These variations modify the form of the question while preserving its underlying meaning and
ground-truth label (or, in the case of negative reformulations, intentionally reversing the label to reflect the logical
change). To minimize unintended sources of variance, each reformulation type followed a predefined
transformation pattern. All variants were first produced using GPT-4.1 [16] in a one-shot prompting setup, where
each reformulation type was illustrated with a single example. The generated rewrites were then manually
reviewed by the author to ensure correctness. We applied three categories of reformulations: positive question

reformulations, negative question reformulations, and answer option reformulations.

Positive question reformulations. These preserve the meaning and the true answer of the original question, while
introducing controlled variations. These transformations are designed to test whether models remain stable under

paraphrasing in the form of lexical or stylistic shifts. We applied two types of positive transformations:

1. Synonym Replacement: substitutes key words or phrases with close equivalents (e.g., ‘Is caffeine found
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in black tea?' — ‘Is caffeine present in black tea?”)
2. Politeness/Hedging: incorporates pragmatic markers, such as polite or tentative expressions (e.g., ‘Is

Paris the capital of France?” — ‘Would you say Paris is the capital of France?’)

Negative question reformulations. These create a question with an opposite meaning, thereby requiring the
correct label to flip. These transformations evaluate whether models can reason accurately under negation and
stay logically consistent when the same question is framed in a contradictory way. We applied two forms of

negative transformations:

1. Contradictory Reformulation: rewrites the question around an opposite hypothesis, including through
the use of negation words (e.g., ‘Does the sun rise in the east?’ — ‘Does the sun not rise in the east?”’)
2. Explicit "False’ Framing: adds the explicit negation expression (e.g., ‘Is the moon a star?” — ‘Is it false

that the moon is a star?”)

Answer option reformulations. This reformulation is not applied on a per-question basis but instead changes
the core prompt uniformly across all examples. Whenever a question is passed to an LLM, we specify the available
answer options it can return. Therefore, this reformulation examines whether models change their answer solely
due to the order of the response options presented to them. We evaluated the LLMs on two versions of the prompt,
one with the Yes/No order (‘Choose one of the following answers: Yes/No’) and one with the No/Yes order

(‘Choose one of the following answers: No/Yes”).

2.3. Binary Question Answering Evaluation Framework

To systematically assess model abilities and patterns in binary question answering, we designed an evaluation
framework built around four complementary metric groups: Performance, Bias, Consistency, and Cross-Domain
Stability. The first three categories capture the core aspects of LLM behavior this benchmark set out to measure.
The Cross-Domain Stability metrics show how much these behaviors vary across different topics, helping us see
if they are general or domain-dependent. All these components are then combined into a unified Model Binary

Score (MBS) to make model comparisons more straightforward.

Performance metrics. Assess the model’s overall effectiveness on the binary question answering task, with all
metrics computed on the original (non-reformulated) dataset. They determine whether the model is fundamentally

capable of performing the task and could be useful to generate predictions in a binary setting.

o F1 (weighted) - an overall quality measure that adjusts for label distribution between Yes and No classes.

Bias metrics. Quantify whether the model’s performance differs between Yes and No classes, with all metrics
computed on the original (non-reformulated) dataset. This matters because a model that performs well overall
may still have divergent results on specific labels, affecting fairness and reliability of the downstream decision-

making.

o ARecall (No - Yes) - difference in recall of the two classes.
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e APrecision (No - Yes) - difference in precision of the two classes.

Consistency metrics. Evaluate how consistently a model answers a question when its phrasing is altered in ways
that do not change its underlying logical meaning; computed using the dataset reformulations described above.
This matters because a reliable model should not change its decision simply because the question is phrased
differently. If meaning-preserving reformulations cause the model to switch the answer, this reveals fragility and

suggests that the model might be relying on superficial patterns rather than genuine reasoning.

e Positive reformulation consistency (PRC) - measures the frequency with which the answer stays the same
across multiple semantically equivalent versions of the same question; uses positive question reformulations
(synonym replacement and politeness/hedging). Equation 1 shows how sample-level positive reformulation
consistency indicator is calculated, where a; is the model’s answer to the original question j, ;i is the model’s
answer to its i-th reformulation of question j, and PRC;= 1 only if answers to all the question variants match
the original.

PRC;

j = 1[aj'i = ajyo Vi € {1, ...,n}] (1)

Equation 2 shows how the dataset-level PRC score is calculated, where N is the number of samples in the dataset

and PRC; is the sample-level positive reformulation consistency indicator for question j.
1
PRC = ¥, PRC; )

e Negative reformulation consistency (NRC) - measures how consistently the model handles question
negations, i.e., whether it provides the correct opposite answer when the question is rewritten to express the
contradictory form of the same claim; uses negative question reformulations (contradictory reformulation and
explicit ‘false’ framing). Equation 3 shows how sample-level negative reformulation consistency indicator is
calculated. Dataset-level NRC score is calculated in the same way as PRC score but using NRC; indicator instead
of PRC; indicator.

]VRC'J = 1[ajll~ * ajyo Vi € {1, ...,n}] (3)

o Answer reformulation consistency (ARC) - measures the frequency with which the model response remains
consistent when the question stays the same and only the presentation of the answer options is changed; uses
answer option reformulations (changes in order). It is calculated in the same way as PRC.

o Self-consistency (SC) - measures the frequency with which the answer stays the same when the identical

question is asked several times; we ask the same question 3 times to get the measure (note that we kept the

temperature parameter at 0 to minimize the randomness). It is calculated in the same way as PRC.

Cross-domain stability metrics. Assess whether a model’s performance, bias, and consistency patterns hold
across the different domains in our dataset. As each domain poses distinct demands, comparing metric values

across them reveals whether observed effects are general or tied to specific contexts. This helps distinguish
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fundamental LLM tendencies from domain-driven phenomena.

e Stdev of the performance metrics - provides a quantitative measure of how widely performance varies
between domains; for each metric, we compute its value separately for each domain and then calculate
the standard deviation across these values.

e Stdev of the bias metrics - provides a quantitative measure of how widely bias varies between domains;
for each metric, we compute its value separately for each domain and then calculate the standard
deviation across these values.

e Stdev of the consistency metrics - provides a quantitative measure of how widely consistency varies
between domains; for each metric, we compute its value separately for each domain and then calculate
the standard deviation across these values.

2.4. Composite Model Binary Score

We combine all previously defined metrics into a single composite measure, Model Binary Score (MBS), which
provides a concise overall assessment of model behavior on the binary task. While the individual metrics reveal
specific strengths and weaknesses, the composite score consolidates performance quality, bias level, consistency
under reformulations, and cross-domain stability into one value. This allows all key dimensions of binary question
answering quality to be represented collectively in a single summary measure. To create MBS, each metric is first
normalized to a common 0-100 scale based on its theoretical minimum and maximum values, where higher values
always indicate better performance. Each normalized metric is then weighted according to its predefined

importance, and the weighted values are added together to produce the composite score.

Metric normalization. Because different metrics have different natural ranges and interpretations, we apply

range-specific normalization rules as described below:

e Symmetric metrics on -1 to 1 scale - metrics with the range of [—1,1], where O represents the best case
and —1/1 represent the worst case (ARecall, APrecision) are normalized as: M = 100 = (1 — |[M|)

e Increasing metrics on 0 to 1 scale - metrics bounded by [0,1], where larger values correspond to better
performance (F1, PRC, NRC, ARC, SC) are normalized as: M = 100 * M

e Decreasing metrics on 0 to 1 scale - metrics bounded by [0,1], where smaller values indicate better
performance (standard deviation of ARecall, APrecision) are normalized by inverting the scale: M =
100 * (1 — M)

e Decreasing metrics on 0 to 0.5 scale - metrics with the range of [0, 0.5], where 0 is the best and 0.5 is

the worst (standard deviation of F1, PRC, NRC, ARC, SC) are normalized as: M = 100 * (1 — 2M)

Weight assignment. Each normalized metric contributes to the composite Model Binary Score according to a
predefined weighting scheme that reflects the relative importance of the four major evaluation components. Below

are the weights we selected for the experiments based on our assessment of the criticality of each aspect:

e Performance metrics (40%) - represent the core model capability on the binary task and therefore
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receive the largest share of the overall weight (all assigned to F1, the single metric in this category).
Bias metrics (20%) - capture a core, but less important evaluation dimension. The total allocation is
distributed equally between ARecall (10%) and APrecision (10%).

Consistency metrics (30%) - constitute the second most important category as they capture model
reliability under variation occurring with normal use. This weight is distributed equally among all
metrics in the category (i.e., 7.5% for each).

Cross-domain stability (10%b) - receive the remaining part of the score. To keep the influence of each
cross-domain metric aligned with the importance of the corresponding core metric, each stdev weight is
assigned proportionally to the weight of its associated main metric. In other words, if w; is the weight of
a core metric M;, and the total weight of all cross-domain metrics is 0.1, then the weight of its cross-

domain stability metric is: Wy gep; = 0.1 * %

2.5. Large Language Models Evaluated

We applied the benchmark to evaluate a set of 15 LLMs. To ensure relevance, we used the most recent releases

from each model family, providing an up-to-date snapshot of current LLM capabilities. The selection spans

multiple sizes and includes both open-weight and closed-weight models. Whenever available, we also included

reasoning-optimized variants. The chosen models were:

10.

11.
12.

13.

03, OpenAl: Closed-weight, reasoning-optimized model; state-of-the-art for structured reasoning [17].
GPT-40, OpenAl: Large, closed-weight model; flagship and highly performant general-purpose system
Reference [18].

GPT-40 mini, OpenAl: Small, closed-weight model; cost-efficient and fast variant of GPT-40 [19].
Gemini 2.5 Pro, Google: Large, closed-weight model; Google’s high-capability flagship system with
strong reasoning capabilities [20].

Gemini 2.5 Flash, Google: Small, closed-weight model; efficient, fast-response variant of the Pro model
Reference [20].

Claude Opus 4.1, Anthropic: Closed-weight, reasoning-focused model; strongest in Anthropic’s lineup
for specialized reasoning tasks [21].

Claude Sonnet 4.5, Anthropic: Large, closed-weight model; Anthropic’s main general-purpose system
Reference [22].

Claude Haiku 4.5, Anthropic: Small, closed-weight model; lightweight, fast variant of Claude [23].
Magistral Medium 1.2, Mistral Al: Medium-sized model optimized for reasoning tasks, with weights
provided on request [24].

Mistral Medium 3.1, Mistral Al: Mistral’s main frontier-class model with weights available upon
request; medium-sized and designed to deliver strong general-purpose performance [25].

Mistral Small 3.2, Mistral Al: Small, open-weight model; efficient and publicly accessible [26].
Llama 4 Maverick, Meta Al: Large, open-weight model; the latest addition by Meta with a best-in-
class performance-to-cost ratio [27].

Llama 3.1 405B Instruct, Meta Al: Large, open-weight model; top-tier performance with broad
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capabilities [28].

14. Llama 3.3 70B Instruct, Meta Al: Medium-sized, open-weight model; delivers strong performance,
even approaching the 405B variant in some cases [28].

15. Llama 3.1 8B Instruct, Meta Al: Small, open-weight model; Meta’s efficient general-purpose system
Reference [28].

In addition, we evaluated a random baseline that predicts Yes and No with equal probabilities of 1/2, offering a

simple chance-level reference for comparing various model performance results to.

3. Results
3.1. General LLM Trends

Table 1: Overall benchmark results, core metrics (best 2 highlighted)

Model Performance Bias Consistency
_
E é &) @] @] v
v &
z T 5|8 £ % 3|Z2
Baseline 0.46 0.01 000 | 027 026 048 024 | 574
o3 0.8 | 007 -0.06 | 090 0.87 096 094|902
GPT-40 0.83 0.09 -0.06 | 0.87 067 095 097 | 86.0
GPT-40 mini 0.77 006 -0.04 | 0.85 067 095 097 | 839
" Gemini2.5Pr0 0.88 | 005 -0.04 [ 090 0.86 0.96 095|905
Gemini 2.5 Flash 0.86 0.07 -0.05 | 0.87 082 095 098 | 89.0
" Claude Opus 4.1 0.88 | 0.02 -0.01 [ 091 077 0.98 098 | 91.0
Claude Sonnet 4.5 0.87 0.05 -003 |09 069 097 099 | 894
Claude Haiku 4.5 0.85 0.14 -0.10 | 0.88 072 0.97 100 | 869
" Magistral Medium 1.2~~~ 0.85 [ -0.05 0.04 | 0.83 0.77 0.93 090 | 873
Mistral Medium 3.1 0.80 0.13 -0.08 | 089 049 093 099 | 83.0
Mistral Small 3.2 0.78 0.15 -0.09 | 0.83 058 095 0098 | 824
" Llama 4 Maverick 0.84 | 0.05 -0.03 087 068 0095 093|865
Llama 3.1 405B 0.81 -0.03 002 | 085 067 098 099 | 864
Llama 3.3 70B 0.82 0.13 -0.09 | 0.82 076 096 0096 | 85.0
Llama 3.1 8B 0.68 028 -0.12 | 0.80 042 094 1.00 | 74.4

Overall, as shown in Table 1, all LLMs in the benchmark performed well on the binary question answering task,
substantially outperforming the random baseline on the calculated metrics. The main outlier is Llama 3.1 8B,
which achieved the lowest scores across most dimensions, although still performed above chance. Importantly,
this model is likely the smallest in the set. For example, Mistral Small 3.2, another small open-weight model, is
3 times larger, with 24B parameters [26]. While the exact sizes of the OpenAl, Google, and Anthropic models
are not publicly disclosed, it is reasonable to assume that even their small offerings are considerably larger as
well. This raises the possibility that model size plays a role in model behavior on the binary QA task, an idea we
explore further in a separate section. For the weighted F1 statistic, most models achieved scores greater than 0.80,
reflecting solid overall performance on the task. Nevertheless, the absence of near-perfect results indicates that

the task retains inherent difficulty and that performance can still be improved.
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In addition, for nearly all models (except for Magistral Medium 1.2 and Llama 3.1 405B) we observe an imbalance
between the Yes and No classes, where the No class shows higher recall but lower precision than the Yes class.
This pattern suggests that, across the board, current LLMs (especially the smaller variants) have a bias towards

answering No more readily than Yes when faced with binary decision-making scenarios.

In terms of consistency, the models show strong self-consistency. When the same question was repeated three
times, they almost always produced the same output, with all the models reaching 90% on the metric and many
exceeding 97%. Interestingly, the reasoning-optimized models (i.e., 03, Magistral Medium 1.2) showed slightly
lower self-consistency, likely because their greater flexibility and broader search space introduced more variation
in more ambiguous cases. The LLMs also demonstrated high consistency with respect to answer option
reformulations. When the order of answer options was changed, all the models maintained consistency in over
93% of cases, with most being consistent in 95%+ cases. This indicates that simple ordering shifts have minimal
impact on their binary predictions. Consistency under positive question reformulations, such as replacing words
with synonyms or adding polite expressions, was also quite good, but noticeably weaker. Most models remained
consistent in the mid-to-high 80s range, with only the strongest reaching around 90% stability, indicating that
even small shifts in wording can influence their outputs. Answering consistently to negative reformulations, such
as contradictory questions or explicit *false’ framings, proved to be the most challenging. In these cases, models
were expected to flip the returned label while preserving the same underlying logical judgment. However, most
models did not do this consistently. They provided the correct logical answer in only about 67—77% of cases, with
several performing even lower. Only two models achieved notably higher consistency, reaching 86%-87% on
this metric (03, Gemini 2.5 Pro), highlighting that handling negation remains a substantial weakness for current
LLMs.

Finally, examining the standard deviation of each metric across domains (shown in Table 2) reveals a clear
pattern: most measures shift noticeably depending on the domain. For bias metrics, the variation can even be large
enough for the direction of the effect to reverse entirely, with some domains showing a move from a No-leaning
tendency to a Yes-leaning one. In contrast, consistency under repeated questioning and answer option
reformulation remains largely strong across models and domains. Overall, these results show that aggregate scores

can mask important cross-domain differences, which we examine in more detail in a dedicated section.
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Table 2: Overall benchmark results, standard deviation of the metrics (best 2 highlighted)

Model Performance Bias Consistency
_ £
= -
g 8 &) @] @]
o T 5|8 £ % 3
Baseline 0.01 0.03 0.00 | 0.03 0.04 003 003
o3 009 [011 006|006 004 003 006
GPT-4o 0.09 0.15 0.07 | 0.07 0.10 003 0.02
GPT-40 mini 0.12 0.19 0.07 | 0.06 0.15 0.02 0.02
“Gemini 2.5 Pro 0.09 003 0.03] 004 0.05 003 0.04
Gemini 2.5 Flash 0.11 0.05 0.03 | 0.07 006 0.04 0.01
" Claude Opus 4.1 009 006 004005 012 0.02 002
Claude Sonnet 4.5 0.10 0.05 0.04 | 005 008 002 0.00
Claude Haiku 4.5 0.11 0.14 0.05] 0.05 013 003 0.00
~ Magistral Medium 1.2~ 0.09 [ 006 0.02]0.09 008 006 0.08
Mistral Medium 3.1 0.09 0.17 0.09 | 0.07 0.10 0.05 0.01
Mistral Small 3.2 0.09 0.16 0.06 | 0.08 0.12 003 0.02
" Llama 4 Maverick 011  [009 0.03]|007 023 004 006
Llama 3.1 405B 0.11 012 0.06 | 0.09 0.13 001 0.02
Llama 3.3 70B 0.12 0.18 0.06 | 0.10 0.07 0.02 0.02
Llama 3.1 8B 0.17 030 0.12 | 012 0.13 005 0.00

3.2. Overall Best Models

Taking all the metrics together and looking at the cumulative score, Claude Opus 4.1 and Gemini 2.5 Pro show
the best results, with 91.0 and 90.5 MBS points, respectively. In terms of performance, both models achieve the
highest overall F1 score on the task (0.88). When it comes to bias, Claude Opus 4.1 shows the better balance
between recall and precision (ARecall 0.02; APrecision —0.01). Gemini 2.5 Pro exhibits a slightly stronger bias
(ARecall 0.05; APrecision —0.04) but still maintains a reasonable Yes/No balance in responses. Across the
consistency dimensions, the models behave similarly, providing stable responses when asked the same question
multiple times (SC), when presented with different answer option formats (ARC), and when given semantically
equivalent questions (PRC). Claude Opus 4.1 is somewhat more consistent on these dimensions (SC 0.98 vs.
0.95; ARC 0.98 vs. 0.96; PRC 0.91 vs. 0.90). In contrast, Gemini 2.5 Pro performs markedly better when handling
negations (NRC), scoring 0.86 compared to Claude’s 0.77. When looking across domains, Gemini 2.5 Pro
demonstrates the most uniform performance, showing less variation across the different areas tested. Claude Opus
4.1, although strong overall, exhibits more domain-by-domain variability, particularly in consistency metrics such

as NRC (stdev of 0.12), suggesting greater fluctuation in handling negative reformulations across contexts.

Overall, both models are strong choices for binary question answering, delivering reliable and high-quality
performance. Claude Opus 4.1 may be the better option when minimizing Yes/No bias is critical, while Gemini

2.5 Pro is preferable for scenarios involving frequent negations or a wider variety of binary question domains.

3.3. Importance of Size and Reasoning Optimization

Figure 1 shows a consistent pattern across all model families: larger models and reasoning-optimized variants

achieved higher composite MBS scores. Reasoning-oriented models, such as OpenAl’s 03 or Anthropic’s Claude
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Opus 4.1, appear at the top of the intra-family rankings. This makes sense, given that many questions in the
benchmark required a degree of reasoning about the presented information, making models optimized for this
better positioned to perform well on the task. Moreover, we can see that model size correlates reliably with
performance: the largest models outperform medium and small variants, while the smallest models fall behind.
This trend appears across all the families, indicating that it is not an artifact of a single model provider but a
general property. Taken together, these results show that both scale and reasoning specialization enhance LLM
ability to answer binary questions reliably, and smaller, non-reasoning models are facing systematic limitations
on this task.

95

OpenAl : Google : Anthropic Mistral Meta MndeITyp?
N reasoning

B large
medium
small

i

Figure 1: Model Binary Score comparison by LLM family and type
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3.4. Cross-domain Breakdown

As seen in Table 3, performance of the LLMs on the binary QA task differs substantially between domains
included in our benchmark. The models perform strongly on reading comprehension and multi-hop reasoning.
Numerical reasoning shows a mixed but generally solid pattern, with larger and reasoning-optimized models
mostly achieving higher F1 scores. Ethics falls into a mid-range band, with the notable exception of closed-source
reasoning models (03 and Claude Opus 4.1), which reach or exceed 0.90 F1. The translation quality evaluation is
where the models struggle the most, with F1 scores largely in the high-60s to low-70s range. Overall, the hardest
domains ended up being those that require capabilities beyond simple reasoning over the information provided in
the prompt. Numerical reasoning adds the need for discrete computational skills on top of logical inference.
Ethical questions rely on a sufficiently rich, norm-aligned world model to answer appropriately. Translation error
detection calls for additional cross-lingual interpretation abilities and sensitivity to linguistic details. The extra
requirements make these domains substantially more challenging than those based on factual retrieval and basic
structured reasoning. And, as our analysis reveals, current LLMSs are not yet equipped to handle them reliably in
binary settings.
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Table 3: Cross-domain performance metric, F1
(>0.90 dark green; 0.89-0.80 green; 0.79-0.70 yellow; 0.69-0.60 red; < 0.59 dark red)
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g =

=y o S =

5 g % Z 8

S § 5 E§E =
Model o [ Z I m
03 091 095 093 0.71 092
GPT-40 091 092 079 066 083
GPT-40 mini 091 089 064 063 078
" Gemini 25Pro -~ 093 095 093 071 085
Gemini 2.5 Flash 092 095 092 0.66 0.84
" Claude Opus4.1 091 094 094 071 090
Claude Sonnet 4.5 091 095 095 068 0386
Claude Haiku 4.5 092 095 094 066 0.78
" Magistral Medium 1.2 0.90 0.93 091 0.67 0.86
Mistral Medium 3.1 090 092 071 073 0.72
Mistral Small 3.2 0.87 090 073 065 073
" Llama4 Maverick | 0.90° 0.93 090 0.63 082
Llama 3.1 405B 091 094 076 065 078
Llama 3.3 70B 092 090 087 [ 058 080
Llama 3.1 8B 0.87 0.85 059" 0.56 046

When it comes to bias, the cross-domain patterns in Table 4 show that most models tend to favor No over Yes,
with only a few isolated Yes-leaning exceptions emerging in specific model-domain combinations. The
magnitude of this No tendency, however, varies considerably across domains. Translation shows the strongest
imbalance, followed by ethics and numerical reasoning. At the same time, some domains, particularly multi-hop
reasoning, remain comparatively well balanced. These results suggest that although models generally tend to

choose No more often, the strength of this inclination (and, at times, even its existence) is highly domain

Table 4: Cross-domain bias metrics
(orange: No-leaning; purple: Yes-leaning; white: balanced/minimal difference)
Model Reading Reason NumReason |, Translation Ethics
8 &, _ & _ &, _ B
g £ | & £ |2 £|& &£ | & £
< < < < < < < < < <
03 -0.01 0.01 | -0.02 0.02 | 012 -001 | 0.27 -0.13 | 002 -0.02
GPT-40 0.05 -0.04 | -001 0.01 | -006 0.03 | 035 -0.14 | 0.15 -0.10
GPT-40 mini 0.01 -0.01 038 -0.12 | 0.15 -0.09
" Gemini2.5Pro  0.04 -0.04 | -001 0.01 | 0.08 -007 | 0.08 -0.03| 0.05 -0.04
Gemini 2.5 Flash 0.04 -0.03 | 001 -0.01 ]| 011 -0.09 | 0.14 -0.05 | 0.06 -0.04
" Claude Opus 4.1 ~ 005 -0.04 | 003 -003 [ 0.10 -009 | -0.07 0.03 | -0.02 ~ 0.02
Claude Sonnet4.5 0.02 -0.02 | -0.02 0.02 | 0.10 -0.09 | 0.02 -0.01 | 0.11 -0.08
Claude Haiku4.5 0.04 -0.03 | 001 -0.01| 006 -0.05| 038 -0.15| 0.19 -0.11
“Magistral M 1.2~ -0.01  0.01 | 0.00 0.00 | -0.03 0.02 [=0.16" 0:06 | -0.06 0.04
Mistral M 3.1 0.07 -0.06 | 0.04 -003 | 0.16 -0.07 |-0.05 0.02 | 044 -0.25
Mistral Small 3.2 ~ 0.10 -0.07 | 0.05 -0.04 | -0.02 0.01 | 044 -0.19 | 0.17 -0.08
" Llama 4 Maverick -0.03 0.03 | 0.00 0.00 | 0.02 -0.01 [ 023 -0.07 | 0.00 0.00
Llama 3.1 405B 0.06 -0.05 | -0.01 0.01 0.14 -0.07
Llama 3.3 70B -0.04 0.03 | -0.01 0.01 | 007 -0.05| 047 -0.13 | 0.18 -0.11
Llama 3.1 8B 0.10 -0.08 | 0.01 -0.01 | 0.11 -002 | 034 -005 | 085 -034
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For the cross-domain consistency analysis, we included only the positive (PRC) and negative (NRC)
reformulation aspects. As the LLMs showed high performance with low variance in self- (SC) and answer
reformulation (ARC) consistency, these dimensions were less valuable to review in detail. Table 5 shows clear
domain-dependent patterns in positive reformulation consistency (PRC) that align with earlier per-domain
findings. The models are most stable in reading and multi-hop reasoning, where they tend to return the same
answer even when exposed to different paraphrased versions of the same question. Stability drops in numerical
reasoning, translation evaluation, and ethical judgment, though a few models stand out as exceptions (e.g., Mistral
Medium 3.1 on translation). For NRC, we have already established the overall difficulty that the models face with
handling negations. Interestingly, the table shows that consistency under this type of reformulation varies more
by model than by domain. Moreover, in many cases, a domain that one model handles the best, another model
handles the worst. For example, Gemini 2.5 Flash has the highest NRC of 0.90 in numerical reasoning, while for
GPT-40 mini this is the most challenging domain with NRC of 0.41. This suggests that negative reformulation

consistency depends less on domain properties and more on model-specific strengths and weaknesses.

To consolidate all the cross-domain findings, Table 6 summarizes the general trends we observed across LLMs.
On reading comprehension and multi-hop reasoning, the LLMs consistently achieve the strongest results across
criteria, while on ethical judgment they show mid-level performance, and struggle on translation evaluation.
Numerical reasoning displays substantial variability, with outcomes highly model dependent. Negative
reformulation consistency is excluded from this summary, as performance on this metric was uniformly weak

across models and did not reveal meaningful domain-level distinctions.

Table 5: Cross-domain consistency metrics
(>0.90 dark green; 0.89-0.80 green; 0.79-0.70 yellow; 0.69-0.60 red; < 0.59 dark red)

Model Positive Consistency (PRC) Negative Consistency (NRC)
g g
8 = g g
£ § % Z s|4§ § & Z 3
s § 5§ E =£|% § B & =
~ ~ Z = S| 24 24 d = &3]
03 092 098 094 081 087|092 086 092 083 084
GPT-4o0 092 096 076 0.88 086 | 082 056 058 064 074
GPT-40 mini 092 092 078 080 084|081 074 041 059 077

Gemini 2.5 Pro 090 097 088 085 088|093 085 092 080 081
Gemini2.5Flash | 0.89 096 091 077 084 | 084 083 090 073 0.8l
“Claude Opus 4.1 | 091 097 094 084 089|076 084 087 084 [0.55
Claude Sonnet4.5 | 0.88 097 094 084 088 | 0.69 [ 057 078 079 0.62
Claude Haiku4.5 | 092 094 090 0380 085|079 076 070 085 [ 047
~Magistral Med 1.2 | 0.90 094 0.81 068 080 | 0.83 071 086 065 077
Mistral Med 3.1 | 092 094 076 096 088 | 0.64 [0:56 035 050 040
Misiral Small 3.2 | 092 091 077 072 084 | 075 062 054 038 061
~ Llama 4 Maverick | 0.89 097 0.85 076 089 [ 087 0.74 080 (023 070
Llama3.1405B | 090 096 081 070 089 | 074 081 [055 049 074
Llama 3.3 70B 090 093 080 064 083|085 078 062 076 0.78

Llama 3.1 8B 087 0.84 067 064 094 | 065 040 027 033 043
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Table 6: Cross-domain LLM behavior summary

. Consistency
Performance Bias (except NRC)
Reading comprehension good slight No-bias good
Multi-hop reasoning good balanced good
Numerical reasoning mixed No-bias mixed
Translation evaluation poor No-bias medium
Ethical judgement medium No-bias medium-good

4, Discussion

4.1. Discussion of the Results

This study set out to provide a new multi-dimensional assessment of how contemporary large language models
handle binary question answering. Our evaluation of 15 latest models across five domains shows that while
modern LLMs are generally competent in binary QA, this competence is accompanied by non-negligible patterns
of No-leaning bias and inconsistency, especially under negation. This indicates that while LLM can be useful in

binary QA settings, they should be applied to the task with caution.

Our findings complement and extend recent studies of binary bias in LLMs. Lu and colleagues [4], Braun [5],
and Cheung and colleagues [6] provide empirical evidence of No-leaning behavior of some LLMs in value
judgment, sentiment analysis, legal texts, and moral decision-making, while Yu and colleagues [3] highlight
“negative attention heads” as a possible architectural explanation for this phenomenon. The present study
replicates these observations at a larger scale, spanning more domains and models, and showing that this No bias
is not limited to specific topics or model families but is a widespread feature of current LLM behavior. At the
same time, by showing that most systems achieve 0.80+ F1 score on binary QA, we demonstrated that this bias
co-exists with strong overall task performance rather than arises from general incompetence. In addition, the
consistency dimension of our framework situates binary QA within the broader landscape of LLM instability
documented in earlier work. Prior research highlighted various LLM consistency issues, such as failure to
preserve logical relations across paraphrases [8] and meaning reversals [9], sensitivity to prompt formatting [11],
and, though less common, tendency to provide different answers when the same query is repeated [10]. Our
consistency analysis advances this line of inquiry by systematically measuring these instabilities specifically in
the context of binary QA. We find that models are almost perfectly stable under repetition and answer format
(order) changes, moderately stable under paraphrasing, but quite fragile when handling negative reformulations.
These results reaffirm earlier findings while also demonstrating meaningful progress: in binary QA, contemporary
LLMs now handle repetitions and formatting changes with high reliability yet remain sensitive to rephrasing and,

especially, negations.

Importantly, our cross-domain analysis also highlights that binary QA is not a single, uniform skill. The evaluated
models handle reading comprehension and multi-step reasoning well, while numerical reasoning questions and
ethical decisions are harder but still manageable. Translation error detection stands out as the weakest area,
suggesting that cross-lingual evaluation places additional strain on model capabilities and urgently needs further

LLM improvements. Notably, across domains, greater task difficulty seems to amplify all model weaknesses at
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once: the harder the task and the lower the performance, the stronger the No-leaning bias and the more frequent
the reformulation inconsistencies. All in all, these differences make clear that LLM behavior on binary QA must

be evaluated in the context of specific domains rather than assumed to reflect a universal level of competence.

Finally, our benchmark has revealed that, when evaluated holistically, reasoning-optimized and larger models
deliver the strongest overall binary QA performance. Their consistently higher composite scores point to a
meaningful advantage in decision reliability, reinforcing the idea that scale and specialized reasoning training are

key drivers of dependable binary QA behavior, especially in reasoning-dependent contexts.

Taken together, these results have several implications for practitioners who rely on LLMs for binary decision

support:

e Treat No as a conservative default. As most models show higher recall but lower precision on No
class, this indicates that No tends to be over-produced relative to the true label distribution. This implies
that false positives (false Yes) in binary QA may be relatively rare, but false negatives (false No) will be
more common. System designers should therefore treat No as an indication of caution and consider
downstream workflows that allow for human verification when No comes with a high cost of error (e.g.,
application or health screenings).

e Becautious with negative phrasings. Our negative reformulation consistency metric shows that models
often fail to flip their answer consistently when the question meaning is inverted through, for example,
use of negation words and expressions. For system designers who control how binary prompts are
formulated, it is safer to avoid constructions that rely on negation, as these increase the likelihood of
inconsistent answers. When negative wording truly cannot be avoided, choosing models with stronger
negation consistency (e.g. 03, Gemini 2.5 Pro) becomes especially important.

e Prefer larger and/or reasoning-optimized models for critical binary decisions. The association
between model size, reasoning optimization, and composite binary score suggests that, where resources
permit, larger and/or reasoning-tuned models should be used for high-impact binary question answering
tasks. Smaller models, while attractive for cost and latency reasons, often show both lower F1 and
amplified biases and inconsistency. A practical deployment strategy is to use a lightweight model for
triage: determining whether the input is genuinely a binary decision task and then routing confirmed
binary questions to a larger, more reliable model. This approach balances efficiency with accuracy while
reducing the risk that sensitive decisions are made by weaker models.

e Benchmark models for your specific scenarios before deployment. Reading comprehension and
multi-hop reasoning questions in our benchmark were handled reliably by many models, while
translation evaluation and ethical judgement questions were marked by far weaker performance and
more inconsistencies. Practitioners should avoid assuming that a model’s results on one binary task or
specific dataset will transfer to others. Whenever possible, model selection should be based on domain-
specific evaluation, ideally using a framework similar to ours that explicitly measures performance, bias,

and consistency.
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4.2. Limitations and Future Work

Several limitations of our study should be acknowledged. First, although our dataset was sufficiently large to
draw meaningful conclusions about LLM behavior, it was still modest compared to the diversity of real-world
binary decision problems. This limitation applies both to the depth of coverage within each domain and to the
overall breadth of domains represented. Because we observe substantial cross-domain variation in performance,
bias, and consistency, a broader and more fine-grained dataset could reveal additional patterns not captured in the
current benchmark. The second limitation concerns the transformations that were required to create the
benchmark dataset. Some examples (particularly in the numerical reasoning domain) needed manual rewriting,
while our positive and negative reformulations relied on LLM-generated paraphrases. Although each step was
standardized and carefully reviewed, any transformation process can introduce subtle shifts in difficulty or
ambiguity. As a result, the dataset might have contained small inconsistencies in complexity across items.
However, given the scale of the dataset and the rigorous human review checks implemented during its generation,
these effects are unlikely to have been large enough to alter the overall trends we observed. Finally, although we
tested a wide range of current models, the LLM landscape is evolving quickly. New releases may show different
behavior, so the results presented here should be viewed as a snapshot of present capabilities rather than a

definitive ranking.

Our benchmark also points to several clear directions for future work. First, expanding it to additional domains
(such as clinical decision-making or legal compliance) would help test whether the binary QA patterns observed
in this study generalize to other settings. A second avenue is multilingual and cross-lingual evaluation. Our
findings in translation evaluation suggest that reasoning across languages poses unique challenges, so building a
fully multilingual binary QA benchmark would allow us to further examine model behavior on the task in
multilingual contexts, potentially revealing new important model weaknesses. Beyond broader coverage, adding
uncertainty measures to the benchmark could provide a deeper insight into LLM consistency behavior. It would
be useful to see if the areas of greater instability align with points of increased model uncertainty, thereby
clarifying whether inconsistencies reflect areas of LLM ambiguity or indicate deeper reasoning limitations. Future
work should also move from diagnosing the issues to mitigating them, involving both training and inference time
strategies, and focusing on the most problematic areas first (i.e., consistency under negation). This extension
would help translate this benchmark from an analytic tool into a foundation for building more robust binary

decision systems.

5. Conclusion

In this paper, we introduced a new dedicated benchmark for comprehensively evaluating large language models
on the binary question answering task. It combines performance, bias, and consistency into a single, interpretable
score and is supported by a five-domain dataset augmented with systematic reformulations. Applied to fifteen
latest models, this benchmark shows that, overall, LLMs are good binary reasoners, with larger and reasoning-
optimized models reliably outperforming smaller ones. Yet, LLMs’ competence is accompanied by a No-leaning
bias, fragility under negative question reformulations, and clear domain-dependent variations (with especially

pronounced weaknesses in translation evaluation).
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These findings have direct implications for the design of LLM-based decision systems. In practice, No should be
treated as a conservative default; prompts should avoid negative phrasings; and models should be selected and
optimized on a per-domain basis, with a preference for larger and reasoning-optimized ones in critical binary
contexts. By sharing the benchmark, we aim to provide a reusable framework for tracking progress in improving
LLM performance and tackling bias and inconsistency in binary question answering settings.
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