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Abstract 

Credit scoring is one mechanism used by lenders to evaluate risk before extending credit to credit applicants. 

The method helps distinguish credit worthiness of good credit applicants from the bad credit applicants.  Credit 

scoring involves a set of decision models and with their underlying techniques helps aid lenders in issuing of 

consumer credit. Logistic regression (LR) is an adjustment of linear regression with flexibility on its preposition 

of data and is also able to handle qualitative indicators. The major shortcoming of Logistic regression model is 

the inability to deal with cooperative (over fitting) effect of the variables. PCA is a feature extraction model that 

is used to filter out irrelevant un-needed features and hence, it lowers model training time and costs and also 

increases model performance. This study evaluates the shortcomings of simple models and proposes to develop 

an efficient and robust machine learning technique combining Logistic and PCA models to evaluate firms in the 

deposit taking SACCO sector. To achieve this, experimental methodology is adopted.  The proposed hybrid 

model will be two staged. First stage will be to transform the original variables to get new uncorrelated 

variables. This will be done using Principal Component Analysis (PCA). Stage two is the use of LR on the 

principal component values to compute the credit scores. Inferences and conclusions were made based on the 

analysis of the collected data using Matlab.  
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1. Introduction 

Credit risk is an important and highly studied topic in finance accounting and banking                                                               

[44]. Many financial institutions take credit risk to be the most critical and difficult risk to manage and analyze. 

Growth in information technology has led to lowering the costs of managing analyzing and acquiring data, 

hence able to build a more efficient and robust technique for credit risk management [26]. Credit scoring is one 

mechanism used by lenders to evaluate risk before extending credit to credit applicants. The method helps 

distinguish credit worthiness of good credit applicants from the bad credit applicants.  Credit scoring involves a 

set of decision models and with their underlying techniques helps aid lenders in issuing of consumer credit.   

Ming-Chang [45] states that bankruptcy in companies lead to economic damages for creditors, management, 

investors and employees together with social cost hence need for credit scoring in finance. 

Reference [22] recognized the need to differentiate between good and bad loan by measuring applicants 

characteristics. He stated that after the measurement credit analysts then advise financial companies on whether 

to lend or not. The arrival of credit cards in the 1960s increased need and expansion of credit scoring. Credit 

scoring is believed to be a better means of evaluating a creditworthy borrower as compared to the traditional 

methods of risk assessment. With enhancement in technology over the years many banks are adopting credit 

scoring models for evaluating of borrower. Credit scoring simplifies the task of estimating the probability of 

default and calculates the loss given default from a range of complicated possible scenarios [95] 

Reference [37] define machine learning as the process by which a computer learns by being exposed to data, 

generally by using an algorithm that optimizes some mathematical function of that data. They state that there are 

two fundamental categories of machine learning i.e. supervised learning and unsupervised learning. Supervised 

learning models are in the business of prediction while unsupervised learning focuses on understanding the 

structure behind a data set. The main characteristic of supervised machine learning algorithm is that it consists 

of target or outcome variable. The target variable being used to predict other features from a given set of 

variables i.e. independent variables. In essences, using the target variable, a model is generated that maps the 

input to a desired output. In this regard the training process generally continues until the function achieves the 

required level of accuracy. Supervised machine learning techniques are achieved using classification and 

regression techniques and algorithms or approaches that range from non-linear regression, generalized linear 

regression methods, linear discriminant analysis, Support Vector Machines (SVMs) decision trees, ensemble 

methods among others. For the unsupervised machine learning, there is no specific target or outcome variable to 

help predict or develop an estimate. The algorithm is mainly used for clustering or segmenting entities into 

various groups for specific intervention.  Some major methods of unsupervised machine learning algorithms are 

Apriori and K-means algorithms [62]  

Reference [62] defines machine learning as a computer science branch with capacity to learn from a given data 

set. He suggests that machine learning models can be used in different fields. These include credit scoring, fraud 

detection, internet search, stock trading, and medical design among other areas. Christopher [15] observed that 

Machine learning is related to the fields of Pattern Recognition, Statistics and Data Mining while also it emerges 

as a subfield of computer science and gives special attention to the algorithmic part of the knowledge extraction 
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process. Reference [19] states that the objective of machine learning is to help solve real world challenges with 

the use of a model that provide a good data estimation and approximation. Machine learning models have been 

used to predict stock price movements over a long period of time. Mehak and his colleagues [43] used Machine 

Learning Techniques to predict stock market predict performance of Karachi Stock Exchange (KSE). The 

results of the study confirmed that machine learning models are capable of predicting the stock market 

performance. The Karachi Stock Market with KSE-100 index was consistent with the behavior that could be 

predicted using machine learning methods. 

Reference [23] Used SVM machine learning in health informatics. They observed that Machine learning 

technique has played a key role in epidemic forecasting for the past years. They state that the selected studies 

showed that by using the machine learning technique, the challenges faced in detection of digital disease can be 

overcome. They however propose that real-time monitoring and forecasting is the next big frontier for the 

researchers in the field of machine learning. Jung and his colleagues [30] demonstrated use of machine-learning 

application in determining significant features with risk of Radiation Pneumonitis (RP) patients. They used 

classification experiments with the chosen features using kernel SVM supervised machine learning model.  

Reference [46] carried out a survey of Machine Learning Applications for Energy-Efficient Resource 

Management in Cloud Computing Environments. They observed that there are various examples of machine 

learning based solutions to several resource management issues in the cloud. They note that it although those 

solutions were not entirely designed for the purpose of energy efficiency; some of them generally reduced 

energy consumption as a side effect. Melmet [46] in their survey list several machine learning methods that have 

helped in energy resource management: They state that demand forecasting is one of the key problems in data 

center management, and ability to have good forecasting techniques can lead to optimal allocation strategies 

which will minimize energy consumption. Through accurate estimation according to [46] can allow cloud 

providers to avail intelligent resource management structures which rely on scheduling of tasks and 

consolidations to turn on the least number of equipment in the data centers, hence reducing energy consumption. 

Researchers have also found ways on how to reduce cooling costs by concentrating on the thermal distribution 

that arise as a result of different workload placements. On the scale of individual equipment and machines, 

machine learning has helped save energy by optimally configuring CPU usage and frequency.  

Machine Learning algorithms have also been used for betterment in Education systems. This has been done 

through predictive models built to predict the retention of new students in Science & engineering course while 

classifying them into three categories based upon overall GPA [28]. The classes were based on three categories 

i.e. at-risk, Intermediate, Advanced. The results showed that students under at-risk category were more likely to 

drop their studies [28]. It thus means that predictive analytics along with machine Learning can be a great tool 

and beneficial in exploring opportunities challenges and improvise the hidden loop holes in education system 

(40) 

1.1. Feature selection 

Reference [60] define the term feature selection to refer to algorithms that output a subset of the input feature 
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set. They state that one factor that plagues classification algorithms is the quality of the data. Irrelevant or 

redundant information or the data is noisy and unreliable then knowledge discovery using training will become 

more difficult Immaterial of whether a learner attempts to select features itself or ignores the noise, feature 

selection prior to learning can be beneficial [60]. Reducing the dimensionality of the data reduces the size of the 

hypothesis space and allows algorithm to operate faster and more effectively. In some cases it can improve 

accuracy on classification. Ramlee and his colleagues [61] observed that dimension reduction is more concerned 

with eliminating the redundant data with the main purpose being to improve the performance of the process. 

Redundancy increases the relation among the features and will make features to be strongly depended on each 

other. Dimension reduction improves the verification process when selecting the features because after the 

unimportant features are removed the classification process becomes easier. Novakovic and his colleagues [54] 

observed that feature selection reduces the dimensionality of feature space, removes irrelevant, redundant or 

noisy data. It brings the immediate effects for application: speeding up a data mining algorithm, improving the 

data quality and thereof the performance of data mining, and increasing the comprehensibility of the mining 

results. Feature selection as a process of selecting necessary variables of a subset for the purposes a learning 

model [36]. The following are the advantages of feature selection: Increases accuracy of the developed model, 

helps reduce on resource use during data collection, removes redundant unnecessary variables, and improves 

data quality, Reduces dimensionality of feature space increasing speed of the model while lowering storage 

space and enhances data understanding enabling understanding of the processes that led to generation of the data 

i.e. enhances ability for one to clearly visualize and abstract the data [36]. Feature selection is a critical and 

important task for data preprocessing. This has high considerable ability to improve and enhance the prediction 

accuracy and performance of financial crises. Feature selection helps process and choose a minimum subset of S 

features from the original set of T dataset features (S<T) such that the dimensionality is optimally lowered. This 

is critical since there are no generally agreed upon variables (i.e. financial ratios) to be the most representative 

features in bankruptcy prediction and credit scoring activities, The collected variables are first examined to 

evaluate their necessity, importance and explanatory power in the chosen dataset. This helps filter out noise 

features reducing dimensionality while enhancing performance of the classifiers 

According to [36] variables for the purposes of feature selection can be classified into three: 

• Relevant- Which are variables that will strongly influence the output of the model hence cannot be 

assumed or left out  

• Irrelevant- Variables that have no influence on the output of the model and these values are generated 

at random    

• Redundant- Where variables take the role of another variable in the model i.e. lead to model 

redundancy. 

The main objectives of feature selection are to obtain feature space with: 

• Low dimensionality  

• Retention of sufficient information  

• Removing of noisy or unwanted features/variables  
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• Comparability of the features  

Principal component analysis (PCA) is a method which enables to explain the variance –covariance structure of 

a set of p-variables through a few linear combinations of these variables (components) [48]. PCA seeks to 

maximize the variance of the linear combination of these variables. PCA is a technique applied to data that are 

not groups of observations and fragmentation of variables. PCA aims to reduce the dimension of a dataset with 

the advantage of simplicity. Steps of computing principal component analysis involves: selecting initial analysis 

variables based on the research problem, Selecting covariance matrix or correlation matrix based on the 

characteristics of the initial variables and then computing the characteristic roots of the covariance or the 

correlation matrix [13]. 

The main applications of factor analysis techniques are:  to reduce the number of variables and to detect 

structure in the relationships between variables, i.e. to classify variables. Main goal of a factor analysis is to 

explain the covariance relationships among the variables in terms of some unobservable and non-measurable 

elements [63]. Very often, the unobserved factors are more interesting than mainly the observed quantitative 

measures in respective data themselves. Due to this feature, factor analysis is able to be widely used in many 

fields such as marketing, psychology, finance, economics, political sciences among others [12]. Factor analysis 

is a method used to reduce the information that have a similar pattern of response so as to get a small set of 

variables from a large set of variables. This ensures that the relationship and pattern of the data can be easily 

interpreted. They explain that there are two main types of factor analysis defined as Exploratory Factor Analysis 

(EFA), and Confirmatory Factor Analysis (CFA) whereby EFA works by determining the relationship between 

variables and factor while, CFA measures the relationship among the many factors [12]. 

Linear Discriminant Analysis (LDA) is a linear classical dimension reduction method that is designed to 

optimally cluster different classes of data providing for a low dimensional subspace [61]. LDA is involved the 

measurement of between-class scatter and within-class scatter so as to quantify the quality of the cluster in a 

given sample data. The method thus detects the significant features from the classes, and then transforms it to 

new space data consisting of only most necessary features  

Stepwise regression selects out only the significant curves from available data on the basis of variance 

contribution computation and collinearity verification, hence enabling the established fitting model to be 

optimal [71]. The aim of stepwise regression method is to maximize the estimation power by use of the 

minimum number of independent variables. Stepwise regression combines both the forward and backward 

selection technique which involves an automatic process of dropping and selecting of independent variables 

[71]. Regina and his colleagues [62] states that the growing varieties, volumes and velocity of amounts data due 

to the growth of technology in particular and the availability of cheaper data sharing and storage facilities 

enhanced by availability of cheaper and more so more powerful computational tools have led to a new frontier 

in the data science field. This thus has enhanced active ongoing research within the fields of machine learning 

i.e. the process of building analytical models using methodologies for machine to learn from data. The 

algorithms extract knowledge and pattern from a set of data. They propose development of hybrid machine 

learning system that is incorporating the most important features that determine credit worthiness.  
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Cristián and his colleagues [16] observed it’s possible to improve traditional credit scoring models by the use of 

more sophisticated techniques. Finding a model to replace human assessment in credit default is of major 

interest for risk management researchers [73]. PCA is a feature extraction model that is used to filter out 

irrelevant un-needed features and hence, it lowers model training time and costs and also increases model 

performance [67]. 

Logistic regression (LR) is an adjustment of linear regression with flexibility on its preposition of data and is 

also able to handle qualitative indicators. Logistic regression unlike in LDA has the capacity to predict default 

chance of a loan applicant and identify the other variables related to applicant.  LR is the best when a decision 

maker wants to be sure a client will pay a loan [52]. According to [33] LR is likely a better performing model 

when used on smaller number of parameters.  Generating an accurate, as well as explanatory; classifying model 

is an increasingly important issue in credit risk management [44]. Marcos & Reginaldo [39] propose that future 

studies on credit scoring should strive to use hybrid models, combining different techniques to improve 

classification and predictive performance. Employing feature reduction models will enhance accuracy and 

improve on results . Pejic and his colleagues [47] states that the amount of data is constantly increasing, which 

thus creates a lot of challenges in successful decision making for managers. Growth of both valuable as well as 

invaluable data in databases has led to a need for the use of different techniques which can help in extracting, 

finding and analyzing data important for decision making. 

The major shortcoming of Logistic regression model is the inability to deal with cooperative (over fitting) effect 

of the variables [6]. This lowers accuracy of the model. Any slight increase in the accuracy levels of an existing 

model is of great importance. This study proposes to develop a hybrid machine learning model combining 

Logistic and PCA models to evaluate firms in the deposit taking SACCO sector. A hybrid model combines 

advantages of the two models creating a robust model [35]. Each algorithm will have its own advantages and 

disadvantages hence developing prediction model for a classification problem cannot be obtained effectively 

and efficiently by using of only any one of the available classification algorithms. They propose that Instead of 

relying on a single classifier, we can combine two or more models which enhance accuracy of classification [18] 

1.2. Specific objectives 

• To evaluate and discriminate the most suitable variables for developing the model.  

• To assess the ability of the simple existing models to discriminate between good, neutral and bad score.  

• To evaluate the ability of the developed hybrid model to discriminate between good, neutral and bad 

score 

1.3. Research questions 

• Can the model discriminate the most suitable variables?   

• Can the simple existing models discriminate among good, neutral and bad scores?  

• Can the developed hybrid model discriminate among good, neutral and bad scores? 
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2. Related studies 

There has been increased demand on credit loans and the limited number of credit experts due to need to 

minimize costs on paying the experts. Lenders hence require efficient and accurate automated credit scoring 

model. Due to significant number of customer portfolios, need for enhancement in credit scoring system which 

will lead to loss reduction, future savings, faster processing, and a closer behavioral study on the existing 

customers there has been to numerous attempts to develop models [103]. Aduda and his colleagues [4] 

reinforces on these benefits of credit scoring which include accuracy in the decision making process. They state 

that accuracy is gained as a result of reduction in adverse selection cases due to making better assessments. They 

further state credit scoring decreases information asymmetries between borrowers and lenders in financial 

markets and also allow lenders to more accurately evaluate risks and improve portfolio quality. Credit scoring 

plays a vital role in economic growth by helping expand access to credit markets, lowering the price of credit 

and reducing delinquencies  

Machine learning to be the process by which a computer learns by being exposed to large data, generally by 

using an algorithm that optimizes some mathematical function of that given data [37]. There are two main 

fundamental categories of machine learning i.e. supervised learning and unsupervised learning. Supervised 

learning models are in the business of prediction while unsupervised learning focuses on understanding the 

structure behind a data set [37]. Domingos [21] defines machine learning as a computer science branch with 

capacity to learn from a given data set. He suggests that machine learning models can be used in different fields. 

These include credit scoring, fraud detection, internet search, stock trading, and medical design among other 

areas. Machine learning is related to the fields of Pattern Recognition, Statistics and Data Mining while also it 

emerges as a subfield of computer science and gives special attention to the algorithmic part of the knowledge 

extraction process [15]. The objective of machine learning is to help solve real world challenges with the use of 

a model that provide a good data estimation and approximation [19]. 

Reference [51] define a credit-scoring model as a formula that puts weight on different characteristics of a 

borrower, lender and loan. Several methods have been used for scoring. Examples include the traditional models 

such as logistic regression and probit, artificial intelligence algorithms and data mining approaches.  The early 

studies of bankruptcy mainly used some accounting ratios where a comparison of accounting ratios of failed 

firms and of the non-failed firms was done. These studies used time series analysis [14]. 

Research and studies on credit scoring models is wide spread: Reference [58] on logistic regression, Reference 

[72] on nearest space method, Reference [38] on hybrid models, Reference [40] on Artificial neural network, 

Reference [17] on genetic algorithmic, Reference [56] on decision trees among others. According to [13] 

Artificial Intelligence models have made significant contribution to information systems. These models include 

neural networks, genetic programming decision trees among others. Neural networks are non-linear, algorithmic 

procedure using interconnected nodes with ability to transform inputs into desired outputs. Comparison between 

different statistical credit scoring approaches demonstrates that advanced techniques, such neural networks and 

genetic programming perform better than more conventional techniques, such as discriminant analysis and 

logistic regression, in terms of their higher predictive ability [2]. Results of some studies show that the 
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predictive capabilities of both approaches were sufficiently similar to make it difficult to distinguish between 

them. Every methodology is likely to give its own result and no methodology gives an optimal result hence 

difficult for decision makers to use only one model in decision making due to many qualitative considerations 

[2]. Probit analysis as a technique that finds coefficient values, which results in the probability of a unit value of 

a dichotomous coefficient value. The probit model transforms linear combination of the independent variables 

into their cumulative probability values from a normal distribution. ANN has more advantages in credit scoring 

compared to other statistical methods [40]. Reference [39] adopted a case study methodology in evaluating 

credit risk for a Credit Union. Using data mining techniques, decision trees and ANN they developed credit risk 

models. The models were able to produce better results than previous models. However they recommend that 

future studies need to combine different techniques to improve predictive and classification power. While 

studying computational time reduction for credit scoring [29] concluded that neural networks and evolutionary 

models are likely to have very high costs since certain number of parameters need optimization so as to achieve 

accuracy rates shown by support vector machine based on stratified sampling. The neural network models 

support both classification and regression algorithms hence, are appropriate for studying the classification 

problems [62]. 

Genetic algorithm (GA) emulates natural selection as proposed by Charles Darwin evolution theory. It is a 

search model that ensembles process of natural evolution. Reference [2] analyzed literature review of credit 

scoring models using 214 articles. They found out that advanced techniques such as genetic programming 

performed better. Reference [17] carried out a study on GA for credit scoring system maintenance function. 

With the help of experts in the field of credit scoring a model was developed to try and learn a function with a 

given set of dataset of 25 models developed earlier. GA was found to have a better performance compared to 

traditional techniques. However David states that GA may not analyze all classes of data, the model is 

dependent on data and business objective; require good processing power and getting an optimal combination of 

parameter data is difficult for a given problem. Huang and his colleagues [30] reviews GA model that uses 

appropriate fitness evaluation function with consideration values of both good classified customers and 

negatively classified customers in a set. The results showed high accuracy rate for the positively classified good 

customers, but poor performance on negatively classified customers. Reference [1] analyzed capacity of genetic 

programming model in the Egyptian market. The model proved better than probit model. Decision trees use 

branching mechanism to explain all the possible outcomes in a scenario. Each tree branch represents a possible 

occurrence or decision. Reference [11] carried out a quantitative survey on 342 online surveys and 31 face to 

face Chinese and Australian firms. The study aimed to determine business collaboration using Decision trees. 

They conclude that decision trees are a good supplement in analyzing collaborating strategies. Reference [66]  

studied ability of decision trees and support vector machines (SVM) in detecting credit card fraud. Using a 

population of 978 fraudulent records and 22 million normal records 3 stratified samples were developed. They 

found that decision trees outperformed SVM. 

Reference [36] was the first to develop linear discriminant analysis (LDA) model. According to [50], the most 

widely used statistical method for credit scoring is LDA. Mircea and his colleagues [46] used discriminant 

analysis to develop a credit scoring model. They found out that discriminant analysis represented an effective 

method of extracting relevant information. It has however been criticized for its  linear relationships requirement 
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between dependent variables and independent variables and its assumptions that the input variables have to 

adhere to normal distribution which does not always hold. Discriminant analysis is based on an assumption that 

different classes of data will be generated by using different Gaussian distributions. The main types of 

discriminant algorithms used for classification being the linear and the quadratic discriminant [62]. 

Logistic regression (LR) is an adjustment of linear regression with flexibility on its preposition of data and is 

also able to handle qualitative indicators. Logistic regression unlike in LDA has the capacity to predict default 

chance of a loan applicant and identify the other variables related to applicant.  LR is the best when a decision 

maker wants to be sure a client will pay a loan [52].  LR is likely a better performing model when used on 

smaller number of parameters. Ricardas and Vytautas [64] used discriminant analysis, LR and ANN methods 

classification of Lithuanian companies into 2 groups of default and non-default. The three methods were found 

to be relevant methods of classification of bank clients however LR model was the best with 97% accuracy. 

Reference [8] used support vector machine (SVM) to develop a credit scoring model for a micro finance 

institution. Using a sample data of 157 instances consisting of customer information they developed a model 

using SVM and did a comparison of its performance with other models. Percentage of accurately predicted data 

of the default and the non-default cases and the inaccurately classified data were monitored using five methods 

i.e. (LR), Quadratic discriminant Analysis (QDA), (LDA), Back Propagation neural network (BP) method and 

SVM. SVM outperformed other models with accuracy of 85.36%, LR 75.19%, QDA 71.37%, LDA 75.50% and 

BP 80.73%. Dynamic models are better and more flexible way for modeling and forecasting consumer risk. 

Many studies done show the advantages and limitations of credit scoring models. neural networks are reliable 

tools of predicting the determinants of relationship quality; robust to handle missing or inaccurate data i.e. 

associative ability; the model automatically handle variable interaction; their accuracy can be assessed using 

statistical methods like mean squared error; they can easily be updated over time and provide high levels of 

accuracy of 96.9% [12.78] However neural network models also have some technical limitations: No method 

devised yet to determine the significance of independent inputs in a neural network directly; learning process in 

ANN can be time consuming: difficult to state the results in simple precise analytical model statement and if 

environment changes, the network must be reconstructed  

SAS Institute [65]) outlines the following as the main advantages and disadvantages of Bayes statistics: 

Provides a convenient background setting for a range of other models, e.g. hierarchical models and problems on 

missing data; provides interpretable answers; obeys likely hood principle when having two distinct likelihood 

scenarios; provides a natural and a principled way of combining prior information and data; it provides results 

that is conditional on data and exact without reliance on asymptotic approximation. However the Bayes model 

has the below observed limitations: does not tell us how to select prior, can produce posterior distribution results 

that are likely to be heavily influenced by priors, and involves high computational cost especially where large 

parameters might be needed. Advantages of decision trees as follows; accuracy of classification, effectiveness, 

straightforward and intuitive explanation, easy interpretation of results and easy interpretation of results. 

Disadvantages of decision trees include; need for discrete values in the algorithm, high data required and over 

sensitivity to training and costly. 
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Advantages expert systems in credit scoring to be; the systems can take qualitative variables, the system does 

not assume any statistical distribution of data, the systems builds a number of if – then which can be applied to 

new cases of classification decisions [27]. The disadvantages of expert systems as observed by [27] are; 

programming intuition of an expert system is very difficult, inability of systems to adapt to inductive learning 

when using if then rules in changing scenarios, inability of the systems to work with incomplete data, costly 

system to set up 

Machine learning models are prone to over-fitting challenges which leads to bias [21]. This happens mainly on 

the basis of data being used for modeling. It’s possible to improve traditional credit scoring models by the use of 

more sophisticated techniques [18]. Anomaly checks should be done on data to eliminate outlier variables 

before fitting in a model. They separately used PCA and Logistic regression in developing a credit scoring 

model. They observed that for improved performance of models, data needed cleaning and enhancement [42]. 

Using a single model may not consider all characteristics of data [34]. Even with the use of cross-validation to 

reduce over fitting, machine learning models may still produce results that may be difficult to interpret, 

understand and defend [20]. Any slight improvement may lead to a tremendous increase in lending using the 

score. According to [44] hybridization will increase the level of accuracy even by slight margins. They state that 

there is no universal credit scoring model that can be accepted in all circumstances hence there is need to 

continue improving on existing models.  

Over-fitting is a critical issue development of credit model development [27]. Many machine learning models 

face the challenge of over-fitting [57].  Even in scenarios where there are very many relevant features used there 

will be a problem of over-fitting. These high dimension variables, according to [57] becomes a challenge to 

understand hence cannot be used to develop a good classifier. Reference [57] thus proposes use of lower 

effective dimensions or adopting algorithms that can help in lowering the variable dimensions before developing 

a learning model. Reference [91] states that main challenges of traditional machine learning models is over-

fitting of data. They suggest correction of this can be through use of more advanced models like complex 

modeling techniques such as neural networks, random forests and support vector machines. They however 

observed these models will lead to marginal increase in accuracy and will to loss of interpretability. They thus 

suggest that for better improved classifier model there is need to improve on data quality through minimizing of 

outliers.  

Seyed and his colleagues [67] observed that PCA is a feature extraction model that is used to filter out irrelevant 

un-needed features and hence, it lowers model training time and costs and also increases model performance. 

Mehdi K & Reference [44] observed that generating an accurate, as well as explanatory; classifying model is an 

increasingly important issue in credit risk management. Reference [39] propose that future studies on credit 

scoring should strive to use hybrid models, combining different techniques to improve classification and 

predictive performance. the major shortcoming of Logistic regression model is the inability to deal with 

cooperative (over fitting) effect of the variables. This lowers accuracy of the model [6]. 

3. Research design 
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The research is to develop an efficient and robust technique for credit risk management using PCA and logistic 

regression for evaluating SACCOs. To achieve this, experimental methodology is adopted. Experiments have 

shown to be a robust research methodology in mature sciences including applied and behavioral sciences [70]. 

Financial data from SASRA for the 5 years under study (2009-2014) was used.  

Reference [3] ratio analysis can be used to measure performance of an organization. He states that ratio analysis 

is a good tool of financial analysis, which can be used as a predictive tool in measuring organization or business 

performance. Ratio analysis is used in aiding the decision making process, on the basis of the relationship 

between information presented in financial statements with the aim of determining value and evaluating risk. 

Main ratios used for credit scoring for corporate include liquidity, profitability, financial leverage, repayment 

capability and efficiency [10,35,101].  Historical financial ratios can conclusively be used to develop a credit 

predicting model [31].  

Fundamental analysis involves analyzing the key fundamentals of a company's financial condition, operating 

results and its common share stock's underlying characteristics. This involves analyzing and reviewing financial 

statements for the financial ratios among other things [14]. The financial ratios can help us learn the company’s 

strengths and weaknesses, identify underlying trends and developments in the company or organization, 

evaluate operating efficiencies, and gain a general overview and understanding of a business’ nature and future 

operating characteristics. Reference [10] state that financial ratios has been used extensively in financial analysis 

due to its efficiency through an easy developing, understanding procedure and low computing equipment 

requirements.  

Reference [53] states that financial ratios is one of the most reliable and exceptional ways to analyze a 

company’s management of their daily operation activities, performance and management to the management of 

liabilities, assets and equity. The selection and review of the most appropriate and necessary ratios that closely 

represent a company’s performance is important and critical. Choosing incorrect ratios as variable parameter 

may lead to poor quality and undermine the accuracy of the model predicting or estimating a firm’s business 

performance. Financial ratio that measure profitability, liquidity and solvency are seen to be the most reliable 

indicators and are significant and critical predictors of insolvency. Thus financial ratios do give a lot of benefits 

to a company or any business entity. Financial modeling using financial ratios is a reliable tool to predict 

business performance either in the current existing environments or the future environments [53] 

4. Data analysis 

The data analysis is two staged. First stage will be to transform the original variables to get new uncorrelated 

variables. This will be done using Principal Component Analysis (PCA). An In-depth assessment and analysis 

of the variables helps in including important variables and excluding others that are not relevant. It has the 

advantage of providing more precise and succinct credit management models, reducing time of execution and 

improving decision accuracy. The analysis of outlier or discrepant, cases may be important to creating a new 

classification or finding undesirable patterns [50]. Stage two is use of LR on the principal component values to 

compute the credit scores. LR is applied to get specific values of Y as follows: 
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Yi=1 if Y*I ≤ 0.29 for low scores 

Yi=2 if 0.29 < Y*I ≤ 0.95 for neutral scores   

Yi=3 if Y*I >0.95 for high scores  

Where Yi are the independent ordinal values while Y*I   are the scales for credit scaling model.  Inferences and 

conclusions were made based on the analysis of the collected data using Matlab. 

5. Discussion 

From our data analysis the following results are produced based on the models used 

5.1. Hybrid model based on PCA and Multinomial Logistic Regression  

Table 1: Sacco classifications under hybrid PCA-MLR model 

 Low 

scores 

Neutral 

scores 

High 

scores 

Correctly 

classified 

Saccos 

4 5 8 

Misclassified 

Saccos 

1 2 0 

TOTAL 5 7 8 

 

From our hybrid model results show that 4 Saccos under the low scores are correctly classified and 1 is 

misclassified as in the neutral category. This represents 80% correctly classified and 20% misclassified. 

For the neutral scores 5 Saccos are correctly classified while 2 are classified as low score Saccos. This 

represents 71.43% correctly classified and 28.57% wrongly classified as of low scores Under the high scores all 

the 8 Saccos are correctly classified to be of high credit scores representing 100% correct classification. 

On overall the model is able to correctly classify 17 Saccos and misclassify 3 Saccos. This represents 85% 

accuracy and 15% misclassification. 

5.2. Multiple Regression model-PCA 

Table 2: Sacco classifications PCA-Multiple regression model 
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 Low 

scores 

Neutral 

scores 

High 

scores 

Correctly 

classified 

Saccos 

1 4 5 

Misclassified 

Saccos 

4 3 3 

TOTAL 5 7 8 

 

From our PCA-multiple regression model, results show that 1 Saccos under the low scores is correctly classified 

and 4 is misclassified. This represents 20% correctly classified and 80% misclassified. For the neutral scores 4 

Saccos are correctly classified while 3 are miss-classified. This represents 57.14% correctly classified and 

42.86% wrongly classified Under the high scores all the 5 Saccos are correctly classified to be of high credit 

scores while 3 are misclassified. This represents 62.5% correct classification and 37.5% misclassification. On 

overall the model is able to correctly classify 11 Saccos and misclassify 9 Saccos. This represents 45% accuracy 

and 55% misclassification. 

5.3. Stepwise fit-Multinomial logistic Regression model 

This model produces all scores being negative values. This model may not be fit for this set of data because of 

lack of interpretability of output   

5.4. Stepwise fit-Multiple regression 

Table 3: Sacco classifications under stepwise fit-multiple regression model 

 Low 

scores 

Neutral 

scores 

High 

scores 

Correctly 

classified 

Saccos 

8 22 28 

Misclassified 

Saccos 

17 13 12 

TOTAL 25 35 40 

 

From the stepwise fit-multiple regression model results show that 8 Saccos under the low scores are correctly 

classified and 17 misclassified. This represents 32% correctly classified and 68% misclassified. For the neutral 
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scores 22 of the Saccos are correctly classified while 13 misclassified. This represents 62.86% correctly 

classified and 37.14% wrong classification. Under the high scores 28 Saccos are correctly classified while 12 

are misclassified. This represents 62.5% correct classification and 37.5% misclassified. On overall the model is 

able to correctly classify 58 Saccos and misclassify 42 Saccos. This represents 58% accuracy and 42% 

misclassification. 

5.5. Factor Analysis-Multinomial logistic Regression model 

This model produces a negative slope thus this model may not be fit for this set of data because of lack of 

interpretability of output   

5.6. Factor Analysis-Multiple regression model 

Table 4: Sacco classifications under Factor analysis-multiple regression model 

 Low 

scores 

Neutral 

scores 

High 

scores 

Correctly 

classified 

Saccos 

1 2 6 

Misclassified 

Saccos 

3 4 2 

TOTAL 4 6 8 

 

From the stepwise fit-multiple regression model results show that 1 Saccos under the low scores are correctly 

classified and 3 misclassified. This represents 25% correctly classified and 75% misclassified. For the neutral 

scores 2 of the Saccos are correctly classified while 4 misclassified. This represents 33.33% correctly classified 

and 66.67% wrong classification. Under the high scores 6 Saccos are correctly classified while 2 are 

misclassified. This represents 75% correct classification and 25% misclassified. On overall the model is able to 

correctly classify 9 Saccos and misclassify 9 Saccos. This represents 50% accuracy and 50% misclassification. 

6. Conclusion 

From the results in chapter four the developed models the summary of the results are as follows: the PCA-MR 

model is able to correctly classify 11 Saccos and misclassify 9 Saccos. This represents 45% accuracy and 55% 

misclassification. The FA-Multiple regression model is able to correctly classify 9 Saccos and misclassify 9 

Saccos. This represents 50% accuracy and 50% misclassification. The stepwise fit –Multiple linear regression 

model is able to correctly classify 58 Saccos and misclassify 42 Saccos. This represents 58% accuracy and 42% 

misclassification.This Stepwise fit-Multinomial logistic Regression and Factor Analysis-Multinomial logistic 

Regression models produces all scores being negative values. This model may not be fit for this set of data 
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because of lack of interpretability of output.The PCA-Multinomial logistic Regression was able predict 80% 

accurately of the low credit SACCOs 20% was predicted as being in the moderate category.  71.47% of the 

moderate SACCOs were predicted accurately and 28.53% predicted to be of low credit score. The model 

predicted 100% accurate among the high score SACCOs.  On average the PCA-Multinomial logistic Regression 

model achieved 85% accuracy and 15 % of the SACCOs were misclassified. The correlation matrix also shows 

only 2 variables strongly correlated implying over fitting (multicolinearity) has been eliminated. This model also 

out performs the models tasted in this study.From our analysis simple models may not accurately discriminate 

among good neutral and bad scores. The developed hybrid model discriminate among good, neutral and bad 

scores thus achieving our objectives. 
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