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Abstract 

Denoising is a pre-processing step in digital image processing system. It is also typical image processing 

challenges. Many works proposed to solve problem with new approaching. They can be divided into two main 

categories: spatial-based or transform-based. Some denoising methods apply in both spatial and transform 

domains. The goal of this paper focuses on reviewing denoise methods, classifying them into different 

categories, and identifying new trends. Moreover, we do experiments to compare pros, cons of methods in 

survey. 
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Dual-domain image denoise; Non-local dual denoising. 

1. Introduction 

Digital image can degraded by noise in the process of capture, acquisition, processing and transmission. 

Therefore, image denoising is one of the challenges in image processing and computer vision with removing the 

noise from given noisy image in data acquisition to predict original image. A good image denoising model is 

eliminating noise as much as possible while preserving the characteristics of the image such as edges, corners 

and other sharp structures, etc. [1]. Two main approach to image denoising is based on spatial domain, and 

transform domain. Besides, there are some image denoising methods applied in both spatial and transform 

domain. Approaching denoise in spatial domain, Tomasi and his colleagues [2] proposed a smoothing filter with 

properties edge preserving and noise-removing for images called Bilateral Filter. Bilateral filter [3] solves the 

limitation of Gaussian filter [4] by the difference in values with the neighborhood to preserve edges.  In bilateral 

filter, the influence of a pixel to another one should not only occupy a nearby location but also have a similar 

value.  

----------------------------------------------------------------------- 

* Corresponding author.  
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Though bilateral may not be the best noise reducing filter but it is good and simple. Also, it can be used for tone 

mapping, relighting and texture editing. However, the nonlinear operator is hard to compute since it is complex 

and spatially varying kernels. Besides, it causes staircase effect, gradient reversal, and artifact near edges. All 

the shortcomings are covered with the improved with Guided image filter. 

Guided image filter [5] is an edge preserving smoothing filter which output is locally a linear transform of the 

guidance image. It has good edge-preserving smoothing properties like bilateral filter but it solves the unwanted 

problems which occurs in bilateral filter. Guided filter has a O(N) time non-approximate algorithm, independent 

of the window radius and the intensity range. Also, it is easily implement and avoid staircase effect and artifacts. 

It is good to be applied in feathering, matting, single image haze removal and joint up sampling. However, 

despite its advantage, guided filter also has its own limitation which is the exhibit halos near some edges when  

 the image is being smoothing which is shown in Figure5. Besides, it does not effectively reduce noise because 

its output values are unchanged within high-variance region. 

Among methods in denoise using spatial domain, non-linear variational methods such ROF and TV-L1 total 

variational method [6, 7] were one of effective method to reduce noise but also keep edge-preserving. It bases 

on principle that signal detail is dense and smooth in variability. To obtain denoise image, it is an ill-pose 

problem with many solutions. So, the best solution is image with slowest variation or smoothness. All of 

properties above result to minimization problem with solving energy function with data term for assuming noise 

distribution with mean 0 and smoothness term about softness variability in details. 

Approaching transform domain, image will transform into frequency domain to eliminate noise signals 

corresponding to "small" coefficients. Hard and soft thresholding will remove these values when they are less 

than specific thresholding. Wavelet shrinkage method [8] bases on thresholding of small wavelet coefficients. 

By eliminating theses values, the noise will be removed out of data. It takes pros than spatial domain method 

when keeping low contrast details. However, it produces many artifacts. 

The current state-of-the-art denoise methods is approach on taking advantages of spatial and transform domain. 

On spatial domain, these methods discover self-similarity in the image itself. In other words, they model patch 

space of an image and denoise by normalization similar patches. Besides, it will reduces noise signal in the 

patches by transforming frequency domain and thresholding small coefficients. 

Dual-domain image denoise [9] is unmistakably simple method in implementing. Besides, it also has good 

results in PSNR comparing with different methods in same approach [10, 11]. However, because of using noise 

image for guided image, it also procedures artifacts as common errors of transform domain methods. Non-local 

dual denoising [12] is a faster and better method more than Non-local dual denoising method. It avoids artifacts 

by applying NL-Bayes for building guided image. And it only uses one step to remove noise on spatial and 

frequency domain. 

In this paper, we study about image denoising and review the pros and cons of spatial, transform and hybrid 

methods. In spatial domain, we study bilateral filter, guided image filter and TV-L1 total variational method. 
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Next, in transform domain, we also introduce about wavalet shrinkage denoise. Last, we will study methods 

approaching spatial and transform domain for denoise such dual domain image denoise, Non-Local dual 

denoise. 

The organization of this paper is as follows. In Section II, III, IV, we introduce about image denoising and a 

synthesis of image filtering methods. Experiments results are discussed in Section V, followed by the conclusion 

and future work in the Section VI. 

2. Spatial Domain methods 

2.1. Bilateral Filter 

In 1998, Carlo Tomasi and Roberto Manduchiis [2] proposed a new a nonlinear, edge preserving and noise-

reducing smoothing filter for images called Bilateral Filter. Bilateral filter [3] solves the limitation of Gaussian 

filter [1-3] by taking in account the difference in value with the neighborhood to preserve edges while 

smoothing.   

 
Figure 1: Bilateral filter for smoothing an input image [3] 

In bilateral filter, the influence of a pixel to another one should not only occupy a nearby location but also have 

a similar value which is defined by:  

𝐵𝐵𝐵𝐵[𝐼𝐼]𝑝𝑝 ≜
1
𝑤𝑤𝑝𝑝

�𝐺𝐺𝜎𝜎𝑆𝑆(‖𝑝𝑝 − 𝑞𝑞‖)𝐺𝐺𝜎𝜎𝑟𝑟��𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑞𝑞��𝐼𝐼𝑞𝑞
𝑞𝑞∈𝑆𝑆

 (1) 

where 𝐺𝐺𝜎𝜎𝑆𝑆 is a spatial Gaussian weighting that decreases the influence of distant pixels, 𝐺𝐺𝜎𝜎𝑟𝑟 is a range Gaussian 

that decreases the influence of pixels 𝑞𝑞 when their intensity value different from 𝐼𝐼𝑝𝑝, and 𝑊𝑊𝑝𝑝 is normalization 

factor that ensures pixel weight sum to 1.0, defined by: 

𝑊𝑊𝑝𝑝 = �𝐺𝐺𝜎𝜎𝑆𝑆(‖𝑝𝑝 − 𝑞𝑞‖)𝐺𝐺𝜎𝜎𝑟𝑟��𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑞𝑞��
𝑞𝑞∈𝑆𝑆

 (2) 

The improvement in bilateral filter can clearly been seen when we compare the results in Figure [1], 

which are got from applying bilateral filter and Gaussian filter [1, 4]. 
 

Bilateral filter is extremely easy to adapt. For color image, we can change the intensity difference to color 

difference in Eq.1 to get the desire output as below: 



International Journal of Computer (IJC) (2018) Volume 29, No  1, pp 42-58 

45 

𝐵𝐵𝐵𝐵[𝐼𝐼]𝑝𝑝 ≜
1
𝑤𝑤𝑝𝑝

�𝐺𝐺𝜎𝜎𝑆𝑆(‖𝑝𝑝 − 𝑞𝑞‖)𝐺𝐺𝜎𝜎𝑟𝑟��𝐶𝐶𝑝𝑝 − 𝐶𝐶𝑞𝑞��𝐶𝐶𝑞𝑞
𝑞𝑞∈𝑆𝑆

 (3) 

Though bilateral may not be the best noise reducing filter but it is good and simple. Also, it can be used for tone 

mapping, relighting and texture editing. However, the nonlinear operator is hard to compute since it is complex 

and spatially varying kernels. Besides, it causes staircase effect, gradient reversal, and artifact near edges as in 

Figure2. 

 

Figure 2: Comparison between Bilateral and Gauss Filter with increasing spatial and intensity parameter [3] 

2.2. Guided Image Filtering 

Guided image filter [5] is an edge preserving smoothing filter, which output is locally a linear transform of the 

guidance image. It has good edge-preserving smoothing properties like bilateral filter but it solves the unwanted 

problems which occurs in bilateral filter as in Figure3. 

  

(a) (b) 

Figure 3: (a) Bilateral Filter Process and (b) Guided Filter Process 

The guided filtering process involves a guidance image 𝐼𝐼, a filtering input image 𝑝𝑝 and an output image 𝑞𝑞. Both 

𝐼𝐼 and 𝑝𝑝 is given beforehand according to the application and they can be identical. Since we define that guided 

filter is a local linear model between the guidance image and the filtering output, we assume that 𝑞𝑞 is a linear 

transform of 𝐼𝐼 in a window 𝜔𝜔𝑘𝑘 centered at the pixel 𝑘𝑘 and is defined by: 
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𝑞𝑞𝑖𝑖 = 𝑎𝑎𝑘𝑘𝐼𝐼𝑖𝑖 + 𝑏𝑏𝑘𝑘 ,∀𝑖𝑖 ∈ 𝜔𝜔𝑘𝑘 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �𝑎𝑎𝑘𝑘 =

1
|𝜔𝜔|∑ 𝐼𝐼𝑖𝑖𝑝𝑝𝑖𝑖 − 𝜇𝜇𝑘𝑘𝑝̅𝑝𝑘𝑘𝑖𝑖∈𝜔𝜔𝑘𝑘

𝜎𝜎𝑘𝑘2 + 𝜖𝜖
𝑏𝑏𝑘𝑘 = 𝑝̅𝑝 − 𝑎𝑎𝑘𝑘𝜇𝜇𝑘𝑘

 (4) 

In Eq.4, 𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘2 are the mean and variance of 𝐼𝐼 in 𝜔𝜔𝑘𝑘, |𝜔𝜔| is the number of pixels in 𝜔𝜔𝑘𝑘 and 𝑝̅𝑝𝑘𝑘 is the mean of 

𝑝𝑝 in 𝜔𝜔𝑘𝑘. 

We can also model the output 𝑞𝑞 as the input 𝑝𝑝 subtracting unwanted components 𝑛𝑛 as follows:  

𝑞𝑞𝑖𝑖 = 𝑝𝑝𝑖𝑖 − 𝑛𝑛𝑖𝑖 (5) 

There are two cases in an input filter that should be consider which are "high variance" region and "flat patch". 

The idea of guided filter is that it determine "what is an edge that should be preserved"; hence, guided filter keep 

the high variance patch while the flat patch is smoothed which results in its good edge-preserving property.  Not 

only guided filter can preserve edges, it can also preserve gradient and transfer structure. Guided image filter 

can be fast implemented with the following Alg.1 as in [5]. 

Table 3 

Algorithm 1: Guided Image Filtering 

Input: 

𝑝𝑝: filtering input image 

𝐼𝐼: guidance image 

r: radius 

𝜖𝜖: regularization 

Output: 

q: filtering output image 

Begin 

1. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼),                            𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) 

2. 𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼 .∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼,      𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑝𝑝 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼 .∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 

3. 𝑎𝑎 =
𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑝𝑝
𝑣𝑣𝑎𝑎𝑎𝑎𝐼𝐼+𝜖𝜖

 ,                                        𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 − 𝑎𝑎.∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  

4. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎) ,                         𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑏𝑏) 

5. 𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 .∗ 𝐼𝐼 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 

End 

 

Note that 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the mean filter [4], it can be replaced by Gaussian filter without having bad effect on 

performance of guided filter.  
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Figure 4: Detail enhancement comparing with Bilateral Filter with 𝑟𝑟 =  16, 𝜖𝜖 =  0.12 for Guided Filter , and 

$𝜎𝜎𝑠𝑠  =  16,𝜎𝜎𝑟𝑟  =  0.1 for Bilateral Filter. [5] 

In the Figure4, we can clearly see that guided image can avoid staircase effect and artifact that bilateral filter 

has. The result got from guided image is much better than the one got from bilateral filter. 

 

Figure 5: The halo artifacts with 𝑟𝑟 = 16, $𝜖𝜖 = 0.42 for guided filter, 𝜎𝜎𝑠𝑠 = 16, 𝜎𝜎𝑟𝑟 = 0.4 for bilateral filter.[5] 

To sum up, guided filter has a 𝑂𝑂(𝑁𝑁) time non-approximate algorithm, independent of the window radius and the 

intensity range. Also, it is easily implement and avoid staircase effect and artifacts. It is good to be applied in 

feathering, matting, single image haze removal and joint up sampling. However, despite its advantage, guided 

filter also has its own limitation which is the exhibit halos near some edges when the image is being smoothing 

which is shown in Figure5. 

2.3. Non-linear variational methods with Total variational denoise 

The total variational method is first mentioned in the inverse problem when proposing regularizing criteria. It is 

based on the principle that signal has smooth details. So, denoise becomes the minimization problem, which 

finds a image in set of all images with bounded variation. It is applied effectively in noise reduction with 

smoothing image but preserving the edges [6]. 

The original image can be approximated by ideal and noise image as 

𝑓𝑓 = 𝑢𝑢 − 𝑛𝑛 (6) 
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where 𝑓𝑓 is noisy image, 𝑢𝑢 is ideal image and 𝑛𝑛 is noise image which shows as Gaussian distribution with mean 

0. 

Observing that 𝑢𝑢 has smooth in details, Rudin and his colleagues [6] proposes the regularizing constraint for 

ensuing existing unique solution in an ill-posed problem for Eq.[6] as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢∈𝐵𝐵𝐵𝐵(𝛺𝛺)

� |𝛻𝛻𝛻𝛻(𝑥𝑥)| 𝑑𝑑𝑥𝑥
𝛺𝛺

 (7) 

where first constraint assumes Gaussian Noisy with mean 0 as 

�𝑢𝑢(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝛺𝛺

= �𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝛺𝛺

 (8) 

and second constraint expresses noisy derivation 𝜎𝜎 as 

� |𝑢𝑢(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|2

𝛺𝛺

𝑑𝑑𝑥𝑥 = 𝜎𝜎2|𝛺𝛺| (9) 

In [7], Chambolle And his colleagues changed Eq.[7] into the following unconstrained minimization problem as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢∈𝐵𝐵𝐵𝐵(𝛺𝛺)

�|𝛻𝛻𝛻𝛻| 𝑑𝑑𝑥𝑥 +
𝜆𝜆
2
‖𝑢𝑢 − 𝑓𝑓‖22 𝑑𝑑𝑥𝑥

𝛺𝛺

 (10) 

where first term is the smoothness term, second term is data term to evaluate the accuracy of data and 𝜆𝜆 is 

regularization constant. 

Depend on normalization for the smoothness term, there are two model energy. First, ROF (Rudin, Osher and 

Fatemi) model uses 𝐿𝐿1  normalization in the smoothness term as in Eq.10. Second, TV-L1 model uses 𝐿𝐿2 

normalization in data term as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢∈𝐵𝐵𝐵𝐵(𝛺𝛺)

�|𝛻𝛻𝛻𝛻| 𝑑𝑑𝑥𝑥 + 𝜆𝜆‖𝑢𝑢(𝑥𝑥) − 𝑓𝑓‖𝑑𝑑𝑥𝑥
𝛺𝛺

 (11) 

TV-L1 and ROF models are the specific cases in general minimization energy problem [7, 13, 14], which 

defined as 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥
𝐹𝐹(𝐾𝐾𝑥𝑥) + 𝐺𝐺𝑥𝑥 (12) 

where 𝐹𝐹  and 𝐺𝐺  are functions satisfying convex property, and 𝐾𝐾  is linear operator. Clearly, data term and 

smoothness term in ROF and TV-L1 respectively express as 
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𝐹𝐹(𝐾𝐾𝑥𝑥) ≜ �|𝛻𝛻𝛻𝛻| (13) 

𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅 ≜ �
𝜆𝜆
2
‖𝑥𝑥 − 𝑓𝑓‖2 (14) 

𝐺𝐺𝑇𝑇𝑇𝑇−𝐿𝐿1 ≜ �𝜆𝜆‖𝑥𝑥 − 𝑓𝑓‖ (15) 

Applying the Legendre-Fenchel transformation for 𝐹𝐹  with any 𝑝𝑝 𝜖𝜖 𝑋𝑋, we obtain the dual formula 𝐹𝐹∗  of 𝐹𝐹  in 

Eq.12 as 

𝐹𝐹∗(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝑋𝑋

〈𝑝𝑝, 𝑥𝑥〉 − 𝐹𝐹(𝑋𝑋) (16) 

Similarly, applying the transformation for 𝐹𝐹∗ where 𝐹𝐹 and 𝐹𝐹∗ are the convex function, we obtain the formula 

below: 

𝐹𝐹 = 𝐹𝐹∗∗(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝑋𝑋

〈𝑝𝑝, 𝑥𝑥〉 − 𝐹𝐹∗(𝑋𝑋) (17) 

Applying the above formula to 𝐹𝐹, we get the saddle formula as follows: 

min
𝑥𝑥

 max
𝑝𝑝

 𝐹𝐹(𝐾𝐾𝐾𝐾, 𝑝𝑝) + 𝐺𝐺𝑥𝑥 − 𝐹𝐹∗(𝑝𝑝) (18) 

in which 

𝐹𝐹∗(𝑝𝑝) = 𝜎𝜎𝑃𝑃(𝑝𝑝) = � 0 𝑝𝑝 ∈ 𝑃𝑃
+∞ 𝑝𝑝 ∉ 𝑃𝑃 (19) 

where 𝑃𝑃 = {𝑝𝑝:∀𝑖𝑖‖𝑝𝑝𝑖𝑖‖ ≤ 1} 

In primal-dual algorithm, we define proximity operator which is equivalent to implicit gradient descent step, as 

below 

(𝐼𝐼 + 𝜏𝜏𝜏𝜏𝜏𝜏)−1(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

1
2
‖𝑦𝑦 − 𝑥𝑥‖2 + 𝜏𝜏𝜏𝜏(𝑦𝑦) (20) 

To implement Primal-Dual algorithm, 𝐹𝐹∗ and 𝐺𝐺 for ROF and TV-L1 are calculated as below 

(𝐼𝐼 + 𝜎𝜎𝜎𝜎𝐹𝐹∗)−1(𝑝𝑝) =
𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚(‖𝑝𝑝‖, 1) (21) 

(𝐼𝐼 + 𝜏𝜏𝜏𝜏𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅)−1(𝑥𝑥) =
𝑥𝑥 + 𝜆𝜆𝜆𝜆𝜆𝜆
1 + 𝜆𝜆𝜆𝜆

 (22) 

(𝐼𝐼 + 𝜏𝜏𝜏𝜏𝐺𝐺𝑇𝑇𝑇𝑇−𝐿𝐿1)−1(𝑥𝑥) = �
𝑥𝑥 − 𝜆𝜆𝜆𝜆 𝑥𝑥 > 𝑓𝑓 + 𝜆𝜆𝜆𝜆
𝑥𝑥 + 𝜆𝜆𝜆𝜆 𝑥𝑥 < 𝑓𝑓 − 𝜆𝜆𝜆𝜆
𝑓𝑓 |𝑥𝑥 − 𝑓𝑓| ≤ 𝜆𝜆𝜆𝜆

 (23) 
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Table 4 

Algorithm 2: Primal Dual Algorithm 

Data 

+ Step size 𝜎𝜎 > 0, 𝜏𝜏 > 0 

+ 𝜎𝜎𝜎𝜎𝐿𝐿2 < 1, where 𝐿𝐿 = ‖𝐾𝐾‖ 

+ 𝜃𝜃 = 1 

+ 𝑋𝑋: Input 

Begin 

1. 𝑥𝑥𝑖𝑖 = 𝑋𝑋 

2. 𝑝𝑝𝑖𝑖 = ∇𝑥𝑥𝑖𝑖 

3. while not convergence or not enough iteration do 

4.        𝑝𝑝𝑖𝑖 = (𝐼𝐼 + 𝜎𝜎𝜎𝜎𝐹𝐹∗)−1(𝑝𝑝𝑖𝑖 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑖𝑖)                        % Eq.21 

5.        𝑥𝑥�𝑖𝑖 = (𝐼𝐼 + 𝜏𝜏𝜏𝜏𝜏𝜏)−1(𝑥𝑥𝑖𝑖 − 𝜏𝜏𝐾𝐾𝑇𝑇𝑝𝑝𝑖𝑖)                        % Eq.22 or 23 

6.        𝑥𝑥𝑖𝑖 = 𝑥𝑥�𝑖𝑖 + 𝜃𝜃(𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖) 

End 

 

3. Frequency Domain using Wavelet Shrinkage Denoising 

Wavelet shrinkage denoising [8] is considered a non-parametric method which attempts to remove noise and 

retain signal regardless of the frequency content of the signal. The basic idea behind this techniques is to use 

wavelets to transform the data into a different basis, where "large" coefficients correspond to the signal while 

"small" ones represent mostly noise. The wavelet coefficients are suitably modified and the denoised data is 

obtained by an inverse wavelet transform of the modified coefficients. 

Let 𝒀𝒀, 𝑿𝑿 and 𝜀𝜀 denote the observed data, the noiseless data and the error matrices respectively. The three main 

steps of denoising using the wavelet shrinkage technique are as follows: 

Calculate the wavelet coefficient matrix 𝒘𝒘 by applying a wavelet transform 𝑾𝑾 to the data: 

𝒘𝒘 = 𝑾𝑾𝑾𝑾 = 𝑾𝑾𝑾𝑾 + 𝑾𝑾𝜀𝜀 (24) 

• Modify the detail coefficients to obtain the estimate 𝒘𝒘 of the coefficients of 𝑿𝑿: 

𝒘𝒘⟶ 𝒘𝒘�  (25) 

• Inverse transform the modified coefficients to obtain the denoised estimate: 
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𝑿𝑿� = 𝑾𝑾−1𝒘𝒘�  (26) 

 

Figure 6: (left) Noisy "Lena" image with 𝜀𝜀 = 20 and (right) result output provided by Wavelet Shrinkage [8] 

Observing Figure[6], it notes that the noise is removed yet the detail of the image is not smooth compared to 

other spatial filters. However, the color contrast is not consistent as well as the computation complexity is high. 

Also, in some cases, wavelet shrinkage create noticeable artifact that can considerably degrade the image. 

4. Integrated Spatial and Frequency Domain 

4.1. Dual domain image denoising 

Dual domain image denoising (DDID) [9] is an iterative denoising method which combines both spatial and 

transform domains. Since each domain has its advantages and shortcomings, this combination complements and 

solves the problems that effects on the result output.   

Before DDID, there are several state-of-art approaches which combine both domain such as BM3D [15], shape-

adaptive BM3D (SA-BM3D) [16] and BM3D with shape-adaptive principal component analysis (BM3D-

SAPCA) [10]. They denoise based on block-matching which introduces visible artifacts in homogeneous 

regions, expressing as low-frequency noise. Also, they are sophisticated which pay for the high quality with 

implementation complexity [11].  DDID offers a simpler way to implement yet competes BM3D in quality. It 

combines two popular filters for two domains. For the spatial domain, the bilateral filter is used to preserve 

features like edges; however, it has difficulties preserving low contrast details. For the transform domain, short 

time Fourier transform [17] with wavelet shrinkage [8, 18-20] is applied to preserve good detail though it suffers 

from ringing artifacts near steep edges. 

 

Figure 7: Dual Domain Image Denoising process 
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Given a noise-contaminated image 𝑦𝑦 = 𝑥𝑥 + 𝜂𝜂 with a stationary variance 𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝜂𝜂], the goal of DIDD is to 

estimate the original image 𝑥𝑥. The image is separated into two layers which are denoised separately. The high-

contrast layer is bilateral filtered and the low-contrast layer is denoised using wavelet shrinkage. Thus, the 

original image can be approximated by the sum of two denoised layers as 

𝑥𝑥� = 𝑠̃𝑠 + 𝑆̃𝑆 (27) 

where 𝑠̃𝑠 and 𝑆̃𝑆 are the denoised high-contrast and low-contrast images. 

In the first step, the denoised high-contrast values 𝑠̃𝑠𝑝𝑝 for a pixel 𝑝𝑝 is computed using a joint bilateral filter [3]. 

The joint bilateral uses the guide image 𝑔𝑔 to filter the noisy image y. The bilateral kernel is defined over a 

square neighborhood window 𝒩𝒩𝑝𝑝  centered on every pixel 𝑝𝑝 with window radius 𝑟𝑟. The parameter 𝜎𝜎𝑠𝑠  and 𝛾𝛾𝑟𝑟 

shape the spatial and range kernels respectively. The two denoised image high-contrast images is obtain as 

following: 

𝑔𝑔�𝑝𝑝 =
� 𝑘𝑘𝑝𝑝,𝑞𝑞𝑔𝑔𝑞𝑞𝑞𝑞∈𝒩𝒩𝑝𝑝

� 𝑘𝑘𝑝𝑝,𝑞𝑞𝑞𝑞∈𝒩𝒩𝑝𝑝

 (28) 

𝑠̃𝑠𝑝𝑝 =
� 𝑘𝑘𝑝𝑝,𝑞𝑞𝑦𝑦𝑞𝑞𝑞𝑞∈𝒩𝒩𝑝𝑝

� 𝑘𝑘𝑝𝑝,𝑞𝑞𝑞𝑞∈𝒩𝒩𝑝𝑝

 (29) 

where the bilateral kernel is 

 

𝑘𝑘𝑝𝑝,𝑞𝑞 = 𝑒𝑒
−|𝑝𝑝−𝑞𝑞|2

2𝜎𝜎𝑠𝑠2 𝑒𝑒
−

(𝑔𝑔𝑝𝑝−𝑔𝑔𝑞𝑞)2

𝛾𝛾𝑟𝑟𝜎𝜎𝑠𝑠2  (30) 

In the second step, in the transform domain, with the wavelet shrinkage, the low contrast signals are take out by 

taking off the bilaterally filtered values 𝑔𝑔�𝑝𝑝 and 𝑠̃𝑠𝑝𝑝  from 𝑔𝑔𝑞𝑞 and 𝑦𝑦𝑞𝑞 , followed by multiplication with the range 

kernel of Eq. 30. Then, the STFT is performed to transition these low-contrast signals to the frequency domain. 

The resulting coefficients 𝐺𝐺𝑝𝑝,𝑓𝑓, and 𝑆𝑆𝑝𝑝,𝑓𝑓, are presented for frequencies 𝑓𝑓 in the frequency window ℱ𝑝𝑝 with the 

same size as 𝒩𝒩𝑝𝑝. 

𝐺𝐺𝑝𝑝,𝑓𝑓 = � 𝑒𝑒−𝑖𝑖2𝜋𝜋(𝑞𝑞−𝑝𝑝).𝑓𝑓/(2𝑟𝑟+1)𝑘𝑘𝑝𝑝,𝑞𝑞�𝑔𝑔𝑞𝑞 − 𝑔𝑔�𝑝𝑝�
𝑞𝑞∈𝒩𝒩𝑝𝑝

 (31) 

𝑆𝑆𝑝𝑝,𝑓𝑓 = � 𝑒𝑒−𝑖𝑖2𝜋𝜋(𝑞𝑞−𝑝𝑝).𝑓𝑓/(2𝑟𝑟+1)𝑘𝑘𝑝𝑝,𝑞𝑞�𝑦𝑦𝑞𝑞 − 𝑠̃𝑠𝑝𝑝�
𝑞𝑞∈𝒩𝒩𝑝𝑝

 (32) 

Supposing that noise-free for the bilateral kernel 𝑘𝑘𝑝𝑝,𝑞𝑞, the noisy Fourier coefficients have the variance 𝜎𝜎𝑝𝑝,𝑓𝑓
2 : 
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𝜎𝜎𝑝𝑝,𝑓𝑓
2 = 𝜎𝜎2 � 𝑘𝑘𝑝𝑝,𝑞𝑞

2

𝑞𝑞∈𝒩𝒩𝑝𝑝

 (33) 

In the last step, shrinkage factors like to the bilateral filter range kernel. For the wavelet shrinkage factor 𝐾𝐾𝑝𝑝,𝑓𝑓, 

the signal needs keeping and the noise needs discarding: 

 

𝐾𝐾𝑝𝑝,𝑓𝑓 = 𝑒𝑒
−
𝛾𝛾𝑓𝑓𝜎𝜎𝑝𝑝,𝑓𝑓

2

|𝐺𝐺𝑝𝑝,𝑓𝑓|2  (34) 

The shrinkage factors 𝐾𝐾𝑝𝑝,𝑓𝑓 uses the spectral guide 𝐺𝐺𝑝𝑝,𝑓𝑓, and the wavelet shrinkage parameter 𝛾𝛾𝑓𝑓 shows a similar 

part as the bilateral range parameter 𝛾𝛾𝑟𝑟. And the low-contrast value is yielded as following: 

𝑆̃𝑆𝑝𝑝 =
1

|ℱ𝑝𝑝|
� 𝐾𝐾𝑝𝑝,𝑓𝑓𝑆𝑆𝑝𝑝,𝑓𝑓
𝑓𝑓∈ℱ𝑝𝑝

 (35) 

Dual domain image denoise can be fast implemented as in [9].  

4.2. Nonlocal dual denoising 

DDID provides better quality of denoised output as well as a simpler way to implement denoising method in 

both spatial and transform domains than any other state-of-art algorithms sharing the same idea. However, its 

processing time is slow and it also causes strong frequency domain artifacts unexpectedly. A later approach 

named Nonlocal Dual Denoising (NLDD) [12] has overcome those drawbacks.  

 

Figure 8: Non-local dual denoising process 

The strong frequency domain artifacts are caused by the guide which is provided from the first two iterations of 

DDID algorithm. Since the DDID procedure is applied three times with different parameters, each time the 

result of the previous calculation is used as a guide. It notes that the image is denoised in the last iteration only 

and the other two are only used to obtain a suitable guide. Also, because of using the noisy image to be the 

guide in the first iteration and the kernel in Eq.30 is computed from it, "parasite" information is reserved and 

transmitted in the following iterations. This yields a result that contains artifacts. Thus, NLDD chooses to use 

the guide image which is provided by NL-Bayes [11] because it has less artifacts than the one computed in the 

first two iteration of DDID. 
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Figure 9: A detail of the artifacts produced by DDID and the corresponding result of NLDD. In this 

example 𝜎𝜎 = 30 [12] 

5. Experiments and Discussions 

5.1. Evaluation Measures 

MSE (Mean-Square Error) is the average of the squares of the errors about difference between original image 

and restored image 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚𝑚𝑚

�
𝑚𝑚−1

𝑖𝑖=0

�[𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐾𝐾(𝑖𝑖, 𝑗𝑗)]2
𝑛𝑛−1

𝑗𝑗=0

 (36) 

where 𝐼𝐼 and 𝐾𝐾 respectively are the original image and restored image with size 𝑚𝑚 × 𝑛𝑛.\\ 

RMSE (Root-mean-square error) is dervied from MSE as below 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (37) 

PSNR (Peak Signal to Noise Ratio) is a term used to calculate the ratio between the maximum energy value of a 

signal and the noise energy influences the accuracy of the information. Because there are many wide variation 

signals, the PSNR is usually represented by the dB unit. The bigger the PSNR is, the better the image is. The 

formula is used to calculate PSNR as below 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼2

𝑀𝑀𝑀𝑀𝑀𝑀
� (38) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 is the maximum value of the pixel on the image. 

5.2. Noise models 

In this paper, we refer to the image noise problem caused by failure from gauss. The origin of Gauss noise in 

digital images is usually due to the sensor's image acquisition process affected by poor lighting, high 

temperature or signal transmission. Gauss noise is a addition, statistics noise with normal distribution. The 
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probability density function p of the Gaussian random variable z is given by the formula [4]: 

𝑝𝑝(𝑧𝑧) =
1

√2𝜋𝜋𝜋𝜋
𝑒𝑒−(𝑧𝑧−𝜇𝜇)2/2𝜎𝜎2 (38) 

where 𝑧𝑧 represents the grey level, 𝜇𝜇 the mean value and 𝜎𝜎  the standard deviation. 

5.3. Experiments 

In paper, we implement benchmark for denoise methods introduced above. Bilateral method has code from 

OpenCV. Guided image filter implements from guide of author in [5]. In Guided image filter, we use guide 

images from bilateral filter and original filter. With TV-L1, we implements from [13]. Lastly, we use reports 

from [12] on homepage to take results of DDID and NLDD methods. 

Table 1 shows comparison methods such bilateral filter, guided image filter using bilateral filter and original 

input for guided image: 

Table 1: PSNR comparision among noise image, Bilateral filter, Guided image filter with guide image using 

Bilater and original image 

 Noise Bilateral Bilateral Guide Original Guide 

Alley 11.6 20.51 20.94 24.44 

Computer 11.96 20 19.99 24.36 

Dice 11.67 22.44 24.51 36.84 

Flowers 12.39 20.29 20.66 31.28 

Girl 11.69 22.8 25.08 30.3 

Traffic 11.78 19.83 19.74 23.35 

Trees 11.82 18.3 17.63 19.41 

Table 2 shows results of remain methods: 

Table 2: PSNR comparision among TV-L1, Dual-domain image denoise and non-local dual denoise method 

 TVL1 DDID NLDD 

Alley 22.16 25.3 25.23 

Computer 21.67 25.95 25.91 

Dice 25.66 32.33 33.54 

Flowers 21.84 28.81 29.46 

Girl 26.47 32.11 32.94 

Traffic 21.41 24.63 24.77 

Trees 18.25 20.25 20.46 
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From Table 1 and 2, DDID and NLDD methods have results better than remain methods. They take advantages 

of spatial and transform domain in denoise.  Besides, we also see that images with many details such as Trees 

image, Traffic image will take lower results for all methods as Figure10. 

 

Figure10: Comparision PSNR between denoise methods 

6. Conclusions 

To sum up, paper makes a survey for denoise methods. Bilateral filter, guided image filter and total variational 

methods process by spatial domain. In which, total variational method has good result more than remain 

methods.  

Besides, the results also shows NLDD, DDID are effective methods in denoise with not only hybrid approach 

but also spatial methods. From the survey, denoise also has many challenges when denoising on images too 

small details.  
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