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Abstract 

In this paper, a paradigm of a Bayesian Network–based performance prediction model for computer networks 

security risk management was emulated. Model simulation was carried out for the prediction model formulated. 

Java programming language tools were used to simulate, validate and verify the model. The core of simulation 

program was written in Java programming language. Some jar files were created in the code logic for all the 

modules in the prediction model. MS-DOS or command prompt was used to compile and run java and jar files. 

Batch scripts i.e. .bat files were written to compile the jar files. The output of the execution is shown using Java 

API files. Simulation technology was used in this study to evaluate network performance since it is very costly 

to deploy a complete test bed containing multiple networked computers, routers and data links to validate and 

verify the prediction model. The resulting risk impact on network confidentiality, Integrity and availability 

determine the criticality of the overall network performance which will aid in the effective application of 

countermeasures to mitigate the effect of network security risks. 
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1. Introduction 

Generally, a large network cannot be put together and managed by human effort alone. The growing 

complexities of computer networks require the use of effective network management techniques [1,2]. With the 

explosion of the Internet and e-commerce, private computers, and computer networks, if not adequately secured, 

are increasingly vulnerable to damaging attacks. Hackers, viruses, vindictive employees and even human error 

all represent clear and present dangers to networks. Risk can be managed or reduced when managers are aware 

of the full range of controls available and implement the most effective controls [3]. These controls include a 

diverse set of products, services, processes, and policies ranging from complex mathematical encryption 

algorithms to human resource management and federal legislation. 

The existing security solutions are very complex and costly. What is rapidly needed is a flexible, adaptable and 

affordable security solution that would provide greater autonomy. The management of security risk of a network 

is, therefore, a necessity requirement for effective and efficient performances of the network. Hence, there is a 

need for tools to enable early detection of network security risk problems which in turn should quickly alert the 

network administrator of any problem area [4]. 

Managing security risk has become more about quantity than quality [5]. However, it is noted that there is a 

need to ameliorate the state of the art of network security risk management, in order to ascertain good estimators 

of network security risk and to minimize reliance on the human element in measurement and inherent 

subjectivity. This will offer a more systematic and speedy means to obtain meaningful measurements and allow 

for understanding and more insight into the composition of network security mechanisms 

The motivation for this study is based on the reality that a computer network system environment must be self-

protected. It should provide the right information to the right users at the right time through actions that grant 

access based on the user's role and predefined privileges. In lieu of this, Reference [4] proposed an adaptive 

decision-support model for data communication network security risk management. The model aimed to 

predetermine the effect of network security risk factors on network Confidentiality, Integrity, and Availability. 

This will enable early detection of network security risk problems which in turn should quickly alert the network 

administrator of any problem area in the network environment and make the effective decision for quality of 

services. 

In furtherance, Reference [6] established the model with a level of detail sufficient to enable realistic predictions 

of operational network behavior and portray security measurements accurately. Meanwhile, there is a need to 

study the behavior of the proposed prediction model.  Implementing a real-life system can be very expensive 

most times with regards to financial and human resources involved, and sometimes it may be very difficult to 

achieve. 

In this paper, an attempt was made to simulate the results of the proposed prediction model. Since, simulation 

technology has been known to be a very powerful and versatile instrument for evaluating network performance, 

since it is very costly to deploy a complete test bed containing multiple networked computers, routers and data 



International Journal of Computer (IJC) (2018) Volume 31, No  1, pp 119-136 

121 

links to validate and verify a certain network protocol or a specific network algorithm. In this study, simulation 

involves the use of executable computer programs to demonstrate emergent system behavior of the proposed 

prediction model. 

2. Related Works 

There has been quite a good amount of work towards dealing with network security threats and vulnerabilities 

both qualitatively and quantitatively.  The qualitative approach has been to explore network systems’ threats and 

vulnerabilities by proposing a framework for security risk assessment [7,8,9,10,11]. The authors developed a 

qualitative framework for security risk and vulnerabilities assessment by adding new components to the 

processes of the existing framework. Several quantitative approaches had been explored ranging from the 

ontology-based model [12], probabilistic and decision analytic approaches [13], attack graphs [14,15], game 

theory [16,17] and several others quantitative approaches.  

Moreover, the application of Artificial Intelligence (AI) tools to risk management have also been utilized by 

some authors. Reference [18] presented a prediction model of network security situation based on Regression 

Analysis. Linear regression was proposed as a method for network security situation evaluation. The study 

shows that the Regression Analysis complexity rate is low and less time-consuming. The regression prediction 

model reflects the physical network's security situation in a certain range of threshold value. The weakness of 

this method is that it can only work on a small dataset and lack scalability. 

Also, Reference [19] presented a study that deals with uncertainty in software project management. The authors 

make use of a combination of Bayesian Network and knowledge engineering method of Artificial Intelligence to 

analyze risk. The outcome of the study affirmed that one approach of risk assessment is the application of the 

Bayesian framework. 

Reference [20] applied a Bayesian Network approach to traffic flow forecasting, specifically in the management 

of Urban Traffic Control Systems (UTCSs) and freeway systems. The authors presented a new approach based 

on Bayesian networks to predict the traffic flow of the object link, even in the case of incomplete data. It was 

shown that a Bayesian Network can be used to predict future events even where there is no historical data. 

Reference [21] also applied Bayesian Network in managing ecological assets. The author worked on 

parameterization and evaluation of a Bayesian Network for use in an ecological risk assessment. The work is 

based on combining expert and data-based estimations. It was shown that the Bayesian Network can combine 

both subjective and objective data. In cyber situation, Bayesian Networks has been used for cyber security 

analysis in order to capture the uncertain aspects of cyber security [22,23]. The presented work shows that 

Bayesian Network is a modeling approach that correctly captures uncertainties. There are different concepts of 

the Bayesian network that has been employed to manage network security risk. Reference [24] presented a 

causal assessment model based on Bayesian Belief Networks to analyze and quantify information security risks 

caused by various threat sources. The result showed that Bayesian networks are a practical tool both for 

graphically defining the relationships among a set of security variables and for determining the inference of 

causal effects in information security threat analyses. 
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Reference [25] also addressed the problem of security risk assessment and mitigation by proposing a dynamic 

security risk management using Bayesian Attack Graphs (BAG). The Bayesian Attack Graphs (BAGs) is used 

to model vulnerability exploitations in a test network. It was shown that the attack graphs-based risk 

management framework using Bayesian networks enables a system administrator to quantify the chances of 

network compromise at various levels and also help in risk mitigation procedure by identifying the most critical 

and probable attack path in the network. Conversely, the attack graphs can get complex as the network attacks 

sequences increases i.e. lack of scalability. It is also a scenario-based approach. 

Recently, Reference [4] discovered that the challenges for the network managers in providing information about 

network security are formidable. It was noted that 100% network security risk-free guarantees are often 

unattainable, so there is always an element of risk associated with network security. The dearth of formal 

network security risk management models and other formalisms needed to improve the relevance of security 

schemes to network systems have hindered advancement in the automation of security management. it was 

discovered that there is a need to have a formal model that would depict security properties of the network 

system and incorporate relevant objects of significance to the system security risk measurement would be a 

useful contribution. 

An attempt was made to develop a predictive performance model for managing security risks in a Data 

Communication Network that will monitor and report the security status of a network [4,6]. The authors 

presented the architecture, description and mathematical modeling of the proposed network performances 

prediction model. The proposed model utilized the probability characteristics of Artificial Intelligence method 

known as Bayesian Network to address the challenges being faced by network administrators in using objective 

metrics to measure their network security and justify the performance of their network, rather than relying on 

their instinct or experience. The BN prediction model was built using information obtained from experts' 

knowledge elicitation. Bayesian probability updating ensures that the model is not static, but quickly adapts to 

new input and incorporates it with prior expert opinion in a mathematically tractable manner. The BN model has 

been shown to be easily adaptable to incorporate new input. 

In this paper, a paradigm of the Bayesian Network–based performance prediction model for computer networks 

security risk management based on [4,6] will be simulated using a selected network as a test bed to demonstrate 

the behavior of the proposed model. 

3. Simulation Process 

The simulation process is as shown in Figure 1. The simulation program accepts input, processes it and gives an 

output. The inputs are the elicited data on the likelihood of occurrence of security risks from the storage engine. 

These data are then processed based on the underlying computations and the results are presented in form of bar 

charts indicating the inferences. In order to learn a Bayesian Network, there is a need to have an adequate 

database to find the structure and the parameters. In this study, the relational database system employed as the 

dataset structure is MySQL. 
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4. Bayesian Structure Constructions 

During the simulation process, the building of the network structure is an iterative process with the following 

requirements: 

• The process started with a simple network, which was iterated by the addition and deletion of nodes 

continuously until an acceptable network was obtained.  

• The process was carried out with the network experts to ensure the network is kept as simple as possible.  

A very detailed network will necessitate several probabilities for quantification and maintenance, 

making it practically expensive. 

• The number of probabilities increased exponentially with the number of parents. Parents were divorce 

where necessary, to make subsequent elicitation of conditional probabilities less difficult. 

 

Figure 1: Simulation process 

The structure or topology of the network captured the relationships between variables by either: 

• Qualitatively: choosing the variables of interest i.e. uncertain variables and latent variables. Uncertain  

      variables are the observable data while latent variables include any information that is unobservable but  

      is relevant to explain the observable data. 

• Quantitatively: defining the structure of the model via causal dependencies 

4.1. Setting up the qualitative part of the BN 

In this study, experts' knowledge was used as the sole source of information since no statistical or historical data 
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was available.  Therefore, explicit knowledge modelling is central to this study. The elicited domain knowledge 

was represented in a cognitive structure, consisting of the relationships between network security risks, causes 

(causal factors) and effects in [4]. Based on this conceptual model given, the qualitative part of the BN structure 

was defined. During the simulation, the cause-effect model was transformed into a graphical structure for the 

qualitative part of the Bayesian Network, by performing the following sequence of steps: 

• The concepts were translated into mutually exclusive and collectively exhaustive variables or variable 

types that have a finite set of discrete values.  

• Being causal relations, the directed links arcs in the depiction that represent the various sources of 

information was translated directly into arcs of the graphical structure in order to create a directed 

graph. 

• In the graphical model, certain local statistical dependencies between the random variables that 

correspond to the latent variables and observed data were posited based on directional relationships. 

In the qualitative part of the BN shown in Figure 2, the nodes represent uncertain variables which correspond to 

the domain variables while the arcs represent the existence of the causal or influential relationship between two 

variables. It also reveals the underlying dependencies i.e. the hidden structure of the domain variables. The 

existence of Network Security Risk (NSR) found in operation of network services is what is of interest to 

predict. This factor is dependent on the three main latent variables used to define network security. They are 

Confidentiality Problems (C), Integrity problems (I), and Availability Problems (A).  

Confidentiality problems are caused by either Unauthorized Use or Operational Disruptions of the network 

services. Unauthorized use is an intentional act of human elements. It is usually triggered by Identity Theft of 

both external (users) and internal (staff) persons. Operational Disruptions of the network services is triggered by 

Human Error emanating from users of the network services. Integrity problems are caused by Programming 

Bugs triggered by Human Error emanating from external users. Also, it can be caused by Infections and Hacks 

emanating from users of the network services.  

Availability problems are caused by Data Loss and Backup Failure on the part of the administrators (staff). It 

can also be caused by DoS Attack emanating from users of the network services. It is also triggered by Assets or 

Equipment damages inflicted by natural disasters or physical theft caused by non-human elements. Power 

Problem triggered by physical damages of non- human elements is also another cause of Availability problem.  

4.2. Setting up the quantitative part of the BN 

This involves quantification of the network i.e. assigning states and conditional probabilities for each variable 

on the network. The list of the variables employed in this model, the set of values, the corresponding states and 

the representation for each variable are as presented in Table 1.  

This is to avoid any ambiguity in the meaning of the node and to prevent experts from assigning possibly 

different meanings and interpretations during the elicitation process.  
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In this study, each node was treated as an input variable and takes discrete values. The values were both 

mutually exclusive and exhaustive, which means that the variable take on exactly one of these values at a time. 

 
Figure 2: Bayesian Network of Network Security Risk 

4.2.1. Unconditional Priors specification 

This involves populating the Bayesian Network structure in Figure 3 with the prior probabilities at each node. 

This has to do with the unconditional prior distribution for nodes without parents and unconditional prior 

distributions for child nodes. The prior probability of a risk is the known probability distribution over the states 

of the risk and is considered a known relationship by previous experiences of the experts.  The primary data for 

the Bayesian Network knowledge structure information was collected by eliciting experts' opinion using a 

knowledge gathering framework based on a self-completion questionnaire treated offline in this paper.  

The questionnaire was validated by conducting a pilot test using Obafemi Awolowo University, Ile-Ife, Network 

(OAUNET) team members, because of their substantial knowledge and expertise in the Data Communication 

Network processes. 

Thereafter, thirty (30) experts with extensive experience in the network management processes were contacted 

to participate in the study. Educational Institutions networks, being a widely used network domain was chosen 

as the case study.  These experts were asked to give and review their opinion on the rate of occurrence and 
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magnitude of certain defined incidence within the causality network presented in [4].  Of the thirty (30) experts 

contacted in educational institutions, all agreed to complete the survey; up to three reminders via e-mail and 

phone were given to experts to complete and return the survey. However, only 26 experts returned the survey, 

resulting in 86.67% response rate. The elicited data used for the simulation of this model is also treated offline 

in this paper. Thus, the estimation of the prior probability distributions also known as the unconditional 

probability distributions i.e. P(F) of each node associated with each state as determined by the experts and the 

consensus of the experts is thus presented in Table 2. The unconditional probability distributions known as the 

priors, elicited from the experts served as the input variables to the prediction model. 

Table 1:  Values and Representation of the Network Security Risks 

 DESCRIPTION STATE   
REPRESENTATION 

Identity Theft Impersonation Present 
Absent 

IT 

Human error   Fallibility of the Administrators Present 
Absent 

HE 

Unauthorized use Unapproved access Present 
Absent 

UU 

User Attack Breach attempt Present 
Absent 

UA 

Data Loss accidental or unknowing data deletion, 
modification, overwrite 

Present 
Absent 

DL 

Backup Failure Failed copying and archiving of data Present 
Absent 

BF 

Asset damages Servers impairments Present 
Absent 

AD 

Natural Disasters Damages by flood, earthquakes etc Present 
Absent 

ND 

Operational 
disruption    

Interference in network operation Present 
Absent 

OD 

Programming Bugs Programming- related error Present 
Absent 

PB 

Power problems Electricity failure Present 
Absent 

PP 

Hacks Hacker attack Present 
Absent 

H 

Virus and Infections Malware problems Present 
Absent 

VI 

DoS attack     Attempt to make network resources unavailable Present 
Absent 

DA 

Physical Damages Machine impairments Present 
Absent 

PD 

Confidentiality 
problems 

Compromises affecting network Confidentiality High 
Medium 
Low 

C 

Integrity problems Compromises affecting network Integrity High 
Medium 
Low 

I 

Availability problems Compromises affecting network Availability High 
Medium 
Low 

A 

For flexibility in the model, various unconditional priors were assigned assumed probabilities in Figure 2. These 
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were treated as input variables to reflect the actual state of the prediction model once evidence was entered. 

According to the classical probability theory and axioms, there are assumptions that hold for the unconditional 

priors of some of the input nodes. Thus, the unconditional prior probabilities of the network security risks and 

the assumed prior probabilities for the risk impact on network security factors i.e.  CIA was assigned to the 

Bayesian structure in Figure 2.  This is depicted in Figure 3 which shows the prior probabilities distributions in 

percentage (%) for each node on the network using bar charts. The unconditional priors represent the 

uncertainties about the parameter, F, for each node. The term "Present" represents the probability of likelihood 

of occurrence of risk factors i.e. P(F) while the term "Absent" represents the probability of likelihood of non-

occurrence of risk factors i.e.  1-P(F). 

Table 2: Unconditional Probability Distributions of the Network Security Risks 

Risk Factors Prior Probability Distributions (P(F)) 
Identity Theft 0.65 
Human error 0.59 
Unauthorized use 0.74 
Attack 0.45 
Data Loss 0.59 
Backup Failure 0.65 
Asset damages 0.61 
Natural Disasters 0.67 
Operational disruption 0.61 
Programming Bugs 0.56 
Power problems 0.66 
Hacks 0.36 
Virus and Infections 0.69 
DoS attack 0.48 
Physical Damages 0.52 

4.2.2. Probabilities Distributions Specification 

In this study, a node in the BN only takes a discrete random variable with a finite number of states, thus, for the 

quantitative part of the BN, there is, associated with each child node, a Conditional Probability Distribution 

(CPD) over the states of the variable that it represents.  

 Since the set of possible values of a node and its parents are all discrete and finite then the CPD for the node is 

simply a table that specifies the probability of each discrete state of the node given each combination of states of 

its parents.  

P(E|F) represents the conditional probability of Risk Effect (E) given the Risk Causal Factor (F), it is also 

known as the observation model, because it relates Risk Causal Factor (F) to Risk Effect (E) of each of the 

variables.  

The observation model assumed that given the underlying Risk Causal Factor (F) and Risk Effect (E) are 

independent.  

Sampling-based sensitivity analysis employed to estimate the likelihood is Monte Carlo algorithms based on 
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Markov chain simulation i.e. Markov chain Monte Carlo (MCMC) simulation.  

The discrete-event simulation was performed to determine the conditional probabilities. MCMC was used to 

generate random samples of configurations for the various probability distributions in the BN. MCMC sampled  

 

Figure 3: Unconditional priors 

the probability distributions over the states of E given the states of F i.e. P(E|F) by defining reasonable ranges 

for each of the hypotheses or the parameter value i.e. Risk Causal Factor (F), varying each parameter from its 

lowest to highest reasonable value while holding the other variables, Risk Effect (E) fixed and examine the 

resultant changes in the target value. 

The BN was modeled by a list of variables X1, X2,...Xn. then the knowledge about the BN was represented by 

combining the information of all aspects of relationships among the variables in a compact probability form i.e. 

P(x1, x2,...in). This represents the Joint Probabilities Distributions (JPD) of the BN. Since MCMC only requires 

an evaluation of JPD, this is then represented as a Markov chain. This Markov chain is thus simulated by 

performing stochastic simulation taking steps using a random walk algorithm as presented in [6]. It is a discrete-

time random process, which converges the Markov chain after a certain number of steps to the desired 

probability distribution. This process generated complete instantiations x1,...,xn of random variables X. These 

generated variables are random because they can assume different states based on the new parameter. 

Sampling-based sensitivity analysis was performed to sample directly from the BN itself. This is based on 

probabilistic logic sampling to determine how sensitive these conditional probabilities are too small changes in 

the parameters values i.e. prior probabilities distributions. The sampling occurs at non- continuous times and so 
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resulted in discrete time samples. 

Samples were first taken from the unconditional nodes based on the prior probability distributions at these 

nodes. Then, the child nodes of these nodes were sampled based on the conditional probability distributions at 

these nodes conditional on the outcome of the sampled configuration of the respective parents. In the BN 

presented in Figure 3, assuming risk factor A and risk factor B are first sampled from P(A) and P(B) respectively 

and the outcome is Ay and Bn. Then, risk factor C was sampled from P(C| AyBn). This continued until all nodes 

have been sampled. This was counted as one sample for the whole BN. This was carried out for as many 

samples as required. The frequencies at each node were then used to express the sampled prior probabilities. As 

parameters are entered, the sampling process is carried out following this method using the prior probabilities. 

During the sampling process, some samples were rejected due to the fact that some parameter value is not 

already incorporated into the BN. Samples that include values that are not equal to the parameter value entered 

(at the specific nodes) were rejected. Thus, such sampling process resulted in samples with values that are at 

odds with the parameter value. To avoid this situation, the assumption of the Markov property was employed 

during the sampling process. The assumption holds that there are no direct dependencies in the system being 

modeled which are not already explicitly shown via arcs. 

4.2.3. Conditional probabilities distributions 

MCMC estimated the likelihood of all P(E|F) combinations of every node in the BN depicted in Figure 3. This 

is known as Conditional Probability. Every node Xi has a conditional probability distribution P(Xi | Parents(Xi)) 

that quantifies the effect of the parents on the node. The parameters are the probabilities stored in a CPT. Each 

node in the network contains a CPT that determines the strength of the relationship. Each arc has a strength 

associated with it that is also stored in the CPT attached to each node. CPT encodes the prior knowledge 

between the child node and its parent node. Specifically, an element of the CPT at a child node is defined by:  

CPTij = P(child_state = j| parent state = i)                                      (1) 

These probabilities were encoded during the quantification of the network. For each combination of variables, 

the probabilities of these combinations need to sum to one (1).  

4.2.4. Posterior distributions specifications 

P(F|E) represents the Posterior probability of the Risk Effect (E) given the evidence of Risk Causal Factor (C). 

Posterior distributions update the BN in the light of fresh data. New data from time to time might be useful in 

updating the probabilities in the BN. prior probabilities derived can be updated in a Bayesian fashion as new 

data arrives. While observing the value of some variable, there was a need to condition upon the new 

information. This process of conditioning (also called probability propagation or inference or belief updating) 

was performed via a “flow of information” through the network presented in Figure 3. In this model, this 

becomes the task of computing the posterior probability distribution as presented in [4] for a set of query nodes, 

given values for some evidence (or observation) nodes. 
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4.2.5. Joint Probability Distribution (JPD) Specification 

Before performing predictive reasoning in a Bayesian network, there is a need to first derive the joint probability 

distribution between input and output. During the simulation, the directed relationships between random 

variables in the graphical model were translated to a joint distribution over all random variables. Supposing the 

Bayesian network has n random variables x1, x2. . . xn, modeling the Bayesian network requires the assumption 

of the Markov property which states that there are no direct dependencies in the system being modeled which 

are not already explicitly shown via arcs. Thus, computing the joint probabilities of the given random variables 

requires the probabilities of every instantiation combination which is combinatorial explosive. The factored joint 

distribution corresponding to the network of Figure 3 is given by: 

𝑃𝑃(𝑁𝑁𝑁𝑁𝑁𝑁,𝐶𝐶, 𝐼𝐼,𝐴𝐴,𝑈𝑈𝑈𝑈,𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃,𝑉𝑉𝑉𝑉,𝐻𝐻,𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃,𝐷𝐷𝐷𝐷, 𝐼𝐼𝐼𝐼,𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈,𝑁𝑁𝑁𝑁,𝑃𝑃𝑃𝑃)  = 𝑃𝑃(𝑁𝑁𝑁𝑁𝑁𝑁) 

𝑃𝑃(𝐶𝐶|𝑁𝑁𝑁𝑁𝑁𝑁)𝑃𝑃(𝐼𝐼|𝑁𝑁𝑁𝑁𝑁𝑁)𝑃𝑃(𝐴𝐴|𝑁𝑁𝑁𝑁𝑁𝑁)𝑃𝑃(𝑈𝑈𝑈𝑈|𝐶𝐶)𝑃𝑃(𝑂𝑂𝑂𝑂|𝐶𝐶)𝑃𝑃(𝑃𝑃𝑃𝑃|𝐼𝐼)𝑃𝑃(𝑉𝑉𝑉𝑉|𝐼𝐼)𝑃𝑃(𝐻𝐻|𝐼𝐼)𝑃𝑃(𝐷𝐷𝐷𝐷|𝐴𝐴)𝑃𝑃(𝐵𝐵𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴𝐴𝐴|𝐴𝐴) 

𝑃𝑃(𝑃𝑃𝑃𝑃|𝐴𝐴)𝑃𝑃(𝐷𝐷𝐷𝐷|𝐴𝐴)𝑃𝑃(𝐼𝐼𝐼𝐼|𝑈𝑈𝑈𝑈,𝐶𝐶)𝑃𝑃(𝑈𝑈𝑈𝑈|𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃,𝐶𝐶, 𝐼𝐼)𝑃𝑃(𝑈𝑈𝑈𝑈|𝑉𝑉𝑉𝑉,𝐻𝐻,𝐷𝐷𝐷𝐷, 𝐼𝐼,𝐴𝐴)𝑃𝑃(𝑁𝑁𝑁𝑁|𝐴𝐴𝐴𝐴,𝐴𝐴)𝑃𝑃(𝑃𝑃𝑃𝑃|𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃,𝐴𝐴) (2) 

This probability is not stored directly in the model and hence was computed. The probability of interest given a 

model is known as probability inference. In this simulation, network performance prediction forecasting is 

regarded as an inference problem in a Bayesian network. The main goal of inference in Bayesian networks is to 

estimate the values of target nodes given the values of the observed nodes following the simulation algorithm in 

Figure 4. The inferences were performed from parents to children, called prediction.  

5. Simulation Result  

Probabilistic inferences were applied to the Bayesian network to compute and evaluate the impact of network 

security risk on its CIA based on the observed likelihood of occurrence of the security risk factors and predict 

the potential network performance using the algorithm in Figure 4. The inference process of a Bayesian network 

was conducted following the MCMC process. Specifically, each node X first receives a prior from experts' 

knowledge and then compute the conditional probability distributions from each of its parent nodes U, denoted 

P(u|x). In runtime, when a node X is activated, it first updates the belief Belief(x), i.e., the probability of X’s 

states (P(X =x|evidence)), based on the evaluation values and the P(u|x) communicated with its parent. This is 

known as belief updating which performs predictive reasoning, reasoning from new information about causes to 

new beliefs about effects, following the directions of the network arcs. The computation result was used to 

determine the impact or the consequences of a security risk based on the threshold as shown in Table 3 event 

being exercised on the three (3) network security objectives:  

• Confidentiality: This gives assurance that information is not disclosed to unauthorized individuals, 

processes, or devices. The criticality graph is as shown in Figure 5. 

• Integrity: This ensures that information or software is complete, accurate, and authentic. The criticality 

graph  is as shown in Figure 6 

• Availability: This ensures that information and services are accessible and functional when needed. 
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The criticality graph is as shown in Figure 7. 

Finally, the prediction of overall network performance was based on an addictive property of the three network 

security objectives. The threshold that was set for the probabilities to determine the level of criticality of the 

overall network performance is as shown in Table 4 and the criticality graph for the overall network 

performance is shown in Figure 8.  Let S be a Bayesian network and each node in the S has a logical state, 

{Present, Absent}.  

  for all node Xi ∈ S that receives evidence ei  do 

 Mark Xi as an observed node with a value of P(Present) 

 Let N be a collection node from Xi 

 for all node X ∈ N do 

  Receive P(x) from all X''s parent nodes, U. 

  Compute P(U|x) for all X's parent nodes, U. 

 end for 

  end for 

  for all non-leaf node C∈ S do 

  Compute P(C= 1|evidence) (i.e., the impact on Confidentiality) 

  end for 

  for all non-leaf node I∈ S do 

  Compute P(I= 1|evidence) (i.e., the impact on Integrity) 

  end for 

  for all non-leaf node A∈ S do 

  Compute P(A= 1|evidence) (i.e., the impact on Availability) 

  end for 

  Compute p(Z) = Avg (P(C = 1|evidence), P(I= 1|evidence), P(A= 1|evidence) 
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  If  P(Zi = 1|evidence) = threshold then select Zi as potential network performance 

 end if 

Table 4: Criticality Threshold for Overall Network 

RISK FACTORS CRITICALITY NETWORK PERFORMANCES 
Probabilities 
Threshold 

Risk impact/ 
Severity 

Security 
Strength 

Effect on network 

0.00-0.34 LOW HIGH Risk factors having a modest or insignificant impact on 
the network performance; the network is capable of 
offering the efficient quality of services to users 

0.35-0.69 MODERATE MODERATE Risk factors having a significant impact on the network 
performance; the network may offer a reduced array of 
services to users.   

0.70-1.00 HIGH LOW Risk factors having a catastrophic impact on the network 
performance; the network is incapable of offering the 
efficient quality of services to users 

 

 

Figure 4: Network confidentiality criticality 
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Figure 5: Network integrity criticality 

 

Figure 6: Network availability criticality 
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Figure 7: Overall network performances criticality 

6. Summary and Conclusion 

In summary, this research presented a prediction model based on Bayesian Network applied to predetermine the 

effect of network security risk factors on the network confidentiality, integrity, and availability. The proposed 

scheme measures the security risk quantitatively and predicts network performances using objectives metrics 

and eventually improves the overall network performance efficiencies.  

Model simulation was carried out for the prediction model formulated as Bayesian Network model. Java 

programming language tools were used to simulate the model formulated. The core of simulation program was 

written in Java programming language while Ms-DOS Operating System was used as an execution environment. 

The simulation output of the risk impacts in percentages (%) was presented as bar charts. The resulting risk 

impact on network confidentiality, Integrity and availability will now determine the criticality of the overall 

network performance which will aid in the effective application of countermeasures to mitigate the effect of 

network security risks. 

7.  Recommendation for Future Work 

A number of open problems needed to be solved to allow the development of a truly general prediction system. 

These problems suggest a variety of research directions that need to be pursued to make such a system feasible. 

One such direction would be to investigate into allowing automatic learning of the structure of the probabilistic 

model. The current framework requires that the model be specified explicitly. It would be interesting that this 

initial model be suggested and a new framework is allowed to adapt or extend it so as to best fit the data. It 

could also be adapted to a client-server with a distributed administration and peer-to-peer networks. 
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Finally, as future work, a simulator should be designed to assist in simulating and evaluating the performances 

of the model. Either an excessively optimistic or pessimistic expectation of the quality of these prior beliefs will 

distort the entire network and invalidate the results. This suggests that the performance of the Bayesian Network 

models may vary depending on the characteristics of the dataset and/or depending on what simulator tools are 

used.  
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