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Abstract 

This paper focused obtaining new features for improved classification of red blood cells (RBCs). RBCs varies 

according to shapes, colors and sizes. Abnormal RBCs may be caused by anemia. Abnormal RBCs has great 

similarities among each other causing difficulties in medical diagnosis. In this work, spatial, spectral statistical 

features and geometrical features of RBCs are extracted from 1000 normal and abnormal RBCs. The extracted 

features are reduced using Principal Component Analysis (PCA) and tested with different types of machine 

learning algorithms for classification. Classifications were evaluated for high sensitivity, specificity, and kappa 

statistical parameters. The classifications yielded accuracy rates of 97.9%, 98% and 98% for discriminative 

(SVM), generative (RBFNN) and clustering (K-NN) algorithm respectively, which is an improvement over 

previous works. 

Keywords: Principal Component Analysis; RBC classifications; red blood cells features; machine learning 

algorithms. 

1. Introduction 

Medical images help identify and treat various blood diseases and perform clinical studies to reach a diagnosis 

[1]. Blood can have normal and abnormal RBCs, where abnormalities are in the variations in shapes, colors and 

sizes. RBCs images can determine whether it is normal or abnormal by its external edge and central pallor area 

which may indicate different types of blood diseases or anemia [2].  

----------------------------------------------------------------------- 

* Corresponding author.  

Anemia classification is required due to variations in the morphology of the RBCs images. The variation 
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morphology of RBCs produces a huge number of features. To efficiently classify them, number of features need 

to be kept small. This can be achieved when a larger decimation (reduction of features) factor is applied [4]. 

Classification makes use of machine learning algorithms and feature selection or feature reduction process. The 

process of decimation is useful in providing acceptable classification accuracy. Principal Component Analysis 

(PCA) is a statistical technique for feature reduction used in image recognition by almost all scientific 

disciplines [7]. PCA involves a linear transformation of the data such that, in the new coordinate frame, the 

projection of the data has its greatest variance along the first axis (the first principal component), its second 

greatest variance along the second principal component, etc. Variance is retained for representing the data, while 

higher-order ones are discarded. The number of principal components used depends on the level of accuracy 

needed to reconstruct the original data set [10]. Nandi and his colleagues [11] presented a survey of the 

applications of PCA used in the various medical images and the results obtained prove their efficacy. A few 

other studies were done on RBCs classification using PCA and machine learning algorithms [12]. Park and his 

colleagues [13] uses three machine learning algorithms to classify abnormal RBCs. Sharma and his colleagues 

[14] compares different machine learning classifiers of RBCs. Wheeless and his colleagues [15] mentioned that 

there are no literatures yet with regard to the  anaemic RBCs feature selection that has been published leading to 

this work in studying issues related to this topic. 

2. Features reduction of RBCs Images 

This work performed studies on the new features for RBCs classification using data as described in the 

following sections below. The data sets were self-collected and various steps were performed to obtain the 

necessary samples from the raw data set collected. Features were extracted, then relevant and useful ones were 

selected to reduce the total number of features. The aim is to suggest the best features for the RBCs data set 

collected and explain the steps of obtaining them, validated by the results of three choices of classification 

methods. 

2.1 Input Dataset of RBCs 

In this study, 100 different anaemic blood smear slides are used. The slides are collected from the Hematology 

Unit of the Pathology Department, Faculty of Medicine, Serdang Hospital in 2015. An Olympus BX43 U-CAM 

D3 photo imaging microscope was used to transform peripheral blood smear slides into digital images at the 

Faculty of Medicine, SEGI University, Malaysia. Samples of normal and abnormal RBCs slides are shown in 

Figure 1. 

2.2 Materials and Methods 

2.2.1 Feature Extraction 

This proposed work consists of extracting features and reducing it using PCA model. Initially, several steps 

were done in segmenting the individual RBCs image from the digital blood smear image. Thousands of 

individual normal and abnormal RBCs were obtained from the segmentation processes. Figure 2 shows some 

examples of individual RBCs. Feature extraction were done next. It is a difficult and complexprocess due to the 
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similarities in the RBCs. It requires the examination of cells by several features, such as size, area, shape, and 

internal configurations to distinguish RBCs that have different central pallors but with cells of similar size and 

shape. 

   

Figure 1:  Anaemic blood smear image slide 

 

Figure 2: Samples of Individual RBCs 

More specifically, feature extraction aimed to obtain a hybrid of statistical, spectral texture, and geometric 

features based on first, second, or higher-order statistics of the gray level of an image. In the case of spectral 

methods, textures are defined by the spatial frequencies of the band color image, which are red, green, and blue. 

Fourier descriptor is extracted as geometrical features to identify the shape of RBCs. Finally, a total of 271 

features were extracted from 1000 individual RBCs. These led to a new data set called FRBCs. The features 

included some redundancies, that is, some of the variables are correlated with one another because they 

measured the same construct. Thus, reducing the observed variables into a small number of artificial variables 

(principal components) is important, which will account for most of the variances in the observed variables.  

2.2.2 Feature Reduction Using PCA 

The new FRBCs dataset included 271 features from 40 types of 1000 samples. PCA will reduce the observed 

variables into a smaller number of principal components (artificial variables) which will account for most of the 

variances in the observed variables. The motivations for this is to improve the prediction performance and to 

provide rapid and cost-effective predictors as well as to provide an improved analysis of the underlying process 

that generated the data in the ML algorithms. The PCA statistical model includes two phases; the data 

preparation and component extraction. SPSS version 21 was used in the process. The PCA technique is based on 

backward reduction features, which starts with all the variables (features) and removes them one by one at each 

step in order to eliminate the one that decreases the error significantly, until any removal increases the error 
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significantly. In the data preparation phase, data set underwent normalization using standard deviation method 

where all feature values are made to be in the same range, between (±1) and replicated data removed as 

suggested by Gibson and his colleagues [17]. 

The normalization step aims to reduce the significant variations in the range of values of raw data in several ML 

algorithms. The majority of classifiers calculated the distance between two points. When one of the features has 

a broad range of values, this particular feature will determine the distance. The data set obtained from the 

scaling process normality test was applied using  Gaussian distribution test. Results of Gaussian test of the 

FRBC dataset shows that 99.7% of feature RBCs data set ranges from -0.4 and 0.8 and 68% of FRBCs data are 

in the range from 0 and 0.4 and the data has normal distribution.   

Before applying PCA to the FRBC data a test whether the FRBC data are suitable for reduction was done using 

the Kaiser–Meyer–Olkin test. The null hypothesis is tested to prove that the correlation matrix is an identity 

matrix of FRBC data set by using Bartlett's test of sphericity. Then Pearson test was used to test the correlation 

coefficients matrix. Subsequently, the extraction of communalities for each feature is conducted. The 

communalities indicated that the variance in each of the original features is explained by the extracted 

component.  The summaries of 271 variances with relative importance for each feature are shown in Table 1. 

Table 1: Descriptive summaries of variance, relative importance features 

Varince 
Number of 

 features 

Relative importance 

features 

0.80-0.99 241 88.95 

0.60-0.79 17 6.26 

      < 9 13 4.79 

    Total 271 100 

 

The components are extracted after the FRBC data set was prepared. In the component extraction phase, 

Cattell’s scree test was used to select the number of component return, which included plotting the eigenvalues 

of the component and examining the plot to find a point where the shape of the curve changes its direction. The 

recommendation is that all components that have large eigenvalues above the certain points (the elbow in the 

graph)  should be retained because they contributed the most for the explanation of variance in the dataset. 8 

components were chosen by this way with a threshold value of 0.60 for the loading component matrix [16]. The 

estimation score (ESS) of the PCA model was tested by using the Bartlett method to test the orthogonal 

components solution, which is calculated as follows [18,19] . 

𝐸𝐸𝑆𝑆𝑆𝑆 = ∑ 𝑀𝑀𝑀𝑀𝑀𝑀8
𝑖𝑖=1                                                  (1) 

  Where: 
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                     ESS:  is an estimation of score model 

                    ML:  is the maximum loading variable in factor 

3. Evaluating Feature Reduction Results 

After the feature reduction processes using PCA model we done, the resulting feature sets were tested. The 

evaluation of the PCA model is described in the following sections and the evaluation procedure of the obtained 

features using three classification methods are also given. 

3.1 Evaluation of the PCA model 

The evaluation of the PCA model was performed according to the identity and degree of rotation (DoR) 

matrices. DoR is measured by the average diameter of the component transformation matrix. It is the efficiency 

indicator of the rotation process to obtain the orthogonal components. The value of DoR should be more than 

0.70. The component transformation matrix is presented in Table 3. 

Table 3: Component Transformation or DoR Matrix 

 

 

4. Classification using Obtained features 

Classifications were performed using machine learning (ML) algorithms to test the features and component 

abilities in recognizing different types of RBCs. Three different supervised ML algorithms, each with its own 

properties, were applied using Weka software. The first algorithm is generative in the form of artificial neural 

networks (RBFNN), the second algorithm is discriminative in the form of support vector machines(SVM), and 

the third is a clustering algorithm, which is the K-nearest neighbor algorithm(KNN).  

The purpose of using the three algorithms is to enable a fair comparison among them and to measure the 

efficiency of the extracted feature components. The confusion matrix was used to evaluate the performance of 

the classification models through discrimination metrics. In addition, evaluation was performed with accuracy, 

sensitivity, specificity, F-measure, and area under Receiver operating characteristic (ROC), which are the 

common metrics of comparison in the process of evaluating ML classification algorithms. 

https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiAi_uH75TUAhXBliwKHZenDocQFgg0MAI&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReceiver_operating_characteristic&usg=AFQjCNGIWKBfUPnA93xtV-BqClksEBLOXg
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5. Classification Results 

Feature reduction is computed by using the PCA technique for all features (normal and anemic) RBCs. The 

PCA technique reduced 271 features to 8 feature components, which created the new data set, CRBCs.  Each 

component contains at least two features with a high loading value and a minimum 0.90 variance. The accuracy 

of the three ML classifications in the data set of features and components is shown in Table 4. 

Table 4:  Comparison between three Classification 

ML- Algorithms    Data  

   set 

Accuracy% Time    Sec. 

KNN 
FRBCs 90 1.01 

CRBCs 98 0.01 

    
SMO-SVM 

FRBCs 92 6.97 

CRBCs 97.9 1.89 

    
RBFNN 

FRBCs 91.875 18478 

CRBCs 98 2.36 

 

From table 4, the effected of PCA technique is clear, where increase the accuracy of the results of the 

classification task.  In addition reducing training time especially in the RBFNN algorithm. The evaluation of 

classification performance of the three ML algorithms is presented in Table 5. It clearly show that the perfect 

performance of algorithms after using PCA tachniqe 

Table 5: Evaluation results of the ML algorithms 

ML-

Algorithms 
Accuracy Precision Recall F-measure 

KNN 99.90% 0.979 0.979 0.979 

SMO-SVM 98% 0.98 0.98 0.98 

RBFNN 98 % 0.98 0.98 0.98 

 

6. Conclusion  

This work mainly aimed to establish new features of RBCs that can distinguish normal and abnormal RBCs. 

Through different types of ML methods, we achieved an improved precision and accuracy for interpreting 

normal and anaemic RBC images. According to the experimental results, it was concluded that several features 
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extracted from anemic RBC images are not significant when observed independently but improved the 

percentage of accuracy when combined with other features. In addition, the reduction in time consumption was 

very clearly visualized in the training of RBFNN algorithms. The high classification results and the closeness of 

components indicated their strength. 
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