
 

 

 

1.  

26 

International Journal of Computer (IJC)  

ISSN 2307-4523 (Print & Online) 

© Global Society of Scientific Research and Researchers  

http://ijcjournal.org/ 

Detection of Android Malware based on Sequence 

Alignment of Permissions 

Franklin Tchakounté
a
*, Albert Djakene Wandala

b
, Yélémou Tiguiane

c
 

a,b
Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon 

c
Higher School of Computer Science, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso 

a
Email: tchafros@gmail.com 

b
Email: djakenealbert@gmail.com 

c
Email: tyelemou@gmail.com 

 

 

Abstract 

Permissions control accesses to critical resources on Android. Any weaknesses from their exploitation can be of 

great interest to attackers. Investigation about associations of permissions can reveal some patterns against 

attacks. In this regards, this paper proposes an approach based on sequence alignment between requested 

permissions to identify similarities between applications. Permission patterns for malicious and normal samples 

are determined and exploited to evaluate a similarity score. The nature of an application is obtained based on a 

threshold, judiciously computed. Experiments have been realized with a dataset of 534 malicious samples (300 

training and 234 testing) and 534 normal samples (300 training and 234 testing). Our approach has been able to 

recognize testing samples (either malware or normal) with an accuracy of 79%, an average precision of 76% and 

an average recall of 75%. This research reveals that sequence alignment can improve malware detection 

research. 
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1. Introduction 

Android is the mobile operating system most popular and is forecasted to remain popular until 2022 [1]. Its 

openness and popularity attracts malicious people which exploit sophisticated techniques to destroy their targets 

[2]. Android relies on the use of normal and dangerous permissions to control access to resources [3].  
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Permissions are dangerous if they filter access to critical user resources. They are normal if once granted to an 

application, the risk is low. However, attackers exploit these permissions with bad intentions. Indeed, they try to 

combine multiple permissions to maliciously gain privilege levels to unauthorized resources [4].  Authors made 

several proposals based on permissions for detecting malware [5]. Authors exploit specific permissions to make 

decisions [6], combine permissions with other features and machine learning algorithms [7–9] and raise user 

awareness about risks to grant some permissions [6, 10, 11]. In this work, we use permissions as footprints to 

derive similarities among applications. Sequence alignment is so powerful in bioinformatics because it 

determines similarity between gene sequences [12], so that authors exploit them in data science [13] and for 

malware detection [14]. This work adapts this approach to determine similarity based on permissions for 

malicious and normal families. The adaptation of local alignment here supposes, as in reality, no order between 

apparitions of permissions. The proposed approach determines a DeoxyriboNucleic Acid (DNA) based 

permissions for the malicious family and do likewise for the normal family. Then, it computes a classification 

threshold based on the similarity score between the DNA of the tested application and the family DNAs. 

Experiments have been realized with a dataset of 600 samples (300 training and 300 testing) and 752 normal 

(326 training and 326 testing) applications. Our approach has been able to recognize testing samples (either 

malware or normal) with an accuracy of 79.58. This work reveals that Android applications are somehow 

similar based on their permissions. All the artefacts supporting this work are found in [15].  The rest of the 

document is structured in xxx sections.  The first section presents concepts about sequence alignment and 

permissions. The second section presents the proposed approach. The third section presents results and 

discussions. The document ends with a conclusion and some perspectives. 

2. Background 

This section relates main concepts about sequence alignment and permissions.  

2.1. Permissions 

An application requests a permission to make operations on resources [3]. Such resources can be critical or 

sensitive to the user security. In this case, Google classifies protection permissions as dangerous. Permissions 

are normal when they protect less risky data. Android automatically prompts the user to either grant or deny 

dangerous permissions. Signature permissions include permissions granted at install time to applications signed 

by the same certificate as the application that defines those permissions. Permissions are declared in the 

manifest file by the developer based on application requirements. For example, if the application needs to send 

data to a distant server, the developer will add INTERNET permission. If the application needs to read contacts, 

the manifest file will include READ_CONTACTS. This work considers any type of permissions. 

2.2. Sequence alignment  

Sequence alignment is a technique used in bioinformatics to represent two or more sequences one under the 

other, to highlight common regions between DNAs [12]. The purpose of alignment is to arrange the components 

to identify areas of agreement. These alignments are carried out by software whose objective is to maximize the 
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number of coincidences of the elements in the different sequences. There are two types of alignments. The local 

alignment makes possible to search for similarity between parts of sequences whereas global alignment the 

whole sequences to perform. Local alignment is the most used since it is not as strict as the global alignment. 

The example illustrates a local alignment. It presents two sequences (TGK-G and AGKVG) with three 

similarities (second position, third position and fifth position) and two differences (first position and fourth 

position).  

T G K – G  

A G K V G  

It gives a score of alignment equals to       
                                          

 
 

         

 
     

, where 

  {
       
          

 

This work takes a DNA element as a permission. Since developers just include their appearance in the manifest 

file, the sequence order is not relevant for applications. Let consider the two manifests in Table 1.  

Table 1:  Manifest examples 

Manifest 1 Manifest 2 

INTERNET WRITE_SMS 

READ_CONTACTS READ_PHONE_STATE 

WRITE_CONTACTS INTERNET 

WRITE_SMS READ_CONTACTS 

 

The position in which a permission appears is not important. A possible DNA of the first manifest is 

(INTERNET - READ_CONTACTS - WRITE_CONTACTS - WRITE_SMS) and the second (INTERNET-

READ_CONTACTS -  -  - WRITE_SMS). The sequence alignment in this case is 

INTERNET    READ_CONTACTS   WRITE_CONTACTS   WRITE_SMS 

 INTERNET    READ_CONTACTS           ----               WRITE_SMS 

      
       

 
     

2.3. Evaluation measures 
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Some metrics are used within the scope of this work to test the reliability of the similarity approach
a
.  

 True Positive (TP): It the number of malware correctly detected as malware. 

 True Negative (TN): It is the number of benign samples correctly detected as normal 

 False Positive (FP): It the number of malware incorrectly detected as malware. 

 False Negative (FN): It is the number of benign samples incorrectly detected as normal 

 Accuracy: It is the rate of correctly detected samples within the whole dataset 

         
     

           
 

 Precision for positive: It is the proportion of malware identifications which was actually correct. 

                  
  

     
 

 Precision for negative: It is the proportion of benign identifications which was actually correct. 

                  
  

     
 

 Recall: It is the proportion of actual malware that was identified correctly. 

       
  

     
 

3. Methodology 

Our approach to detecting android malware uses techniques used in bioinformatics to detect similarity regions 

between sequences DNA, RNA and others. For our case, it is a question of detecting regions of similarity 

between malicious Android applications using their sequences of permissions, which, unlike DNA sequences, 

do not change according to the order of appearance of the permissions. The goal here is to find a score based on 

sequence alignment between the DNA of any tested application and the DNA of the whole malware samples. 

Then to compute a similarity threshold from which a decision making can be made whether an application is 

normal or malicious. To achieve this objective, this study follows different steps: 

 Structuration of applications: This step aims to extract relevant information such as permission and to 

organize them.  

 Threshold determination: This step selects the threshold value providing the best classification 

performance, according to the dataset of malware. 

 Malware detection: This step experiments the detection of malware and normal based on the similarity 

threshold. 

                                                           
a
 https://developers.google.com/machine-learning/crash-course/classification/video-lecture  

https://developers.google.com/machine-learning/crash-course/classification/video-lecture
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3.1.  Structuring the dataset 

Let be     , the set of malicious samples and     , the set of normal samples. We extract the manifest file 

AndroidManifest.xml of each application A belonging to     . These permissions are included in AllPerm. The 

set of permissions of A is              
   {                 }   

Now we remove duplicated permissions to obtain the DNA of A called                     
. 

                    
   {                    

                   
      } 

The sets of distinct permissions for each application are merged to obtain the DNA of the whole malware 

dataset, namely             

            {                             
} 

We create CountModelMal which is the set of occurrences for each permission belonging to             and 

CountModelNor which is the set of occurrences of each permission belonging to             in the set of 

normal applications     . 

                {                               
                  

    } 

                keeps the gap between occurrences of the frequent permissions used by malware and 

occurrences of these permissions in benign applications. It measures therefore the degree of representativeness 

of permissions in malicious and benign applications.  

3.2. Threshold determination 

This phase aims to define from which value an application is similar to a malware or goodware. The following 

pseudo-code is performed to achieve this task. The objective is to find the best threshold which discriminates 

efficiently between malicious and normal. 

Algorithm 1: Determination of threshold 

Begin 

1. Inputs:      and      ; Output:   

2. We sum up all possible occurrences of permissions of malware 

                                                     

3. for any          

For any application u in EMal  



International Journal of Computer (IJC) (2019) Volume 35, No  1, pp 26-36 

31 

a. Determine the DNA of s,                     
 

b. Compute the sequence alignment score scorealignment between its DNA and             

               ∑                       , Position is the index for each permissions included in the 

DNA of u 

c. if  
              

 
   then TP=TP+1 

else FN=FN+1 

endif 

  endfor 

for any application v in ENor 

d. Determine the DNA of v,                      

e. Compute the sequence alignment score scorealignment between its DNA and             

               ∑                       , Position is the indexes of permissions included in the 

DNA of v  

f. if  
              

 
   then FP=FP+1 

else TN=TN+1 

endif 

endfor 

g. compute five performance metrics : accuracy, precisionpositive, precisionnegative and recall. 

          
     

           
,                   

  

     
 ,                   

  

     
;                

  

     
,                

  

     
 

h. compute the recall gap (Diff_Recall) such that                                               

      endfor 

4. select   such that                         ) 

5. if there is only one   that meets the previous condition return   

6. else if there are several  s, return               
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End 

There are two datasets: malicious samples and normal samples (line 1). The sequence alignment between its 

DNA and the DNA of the whole malware is applied for every malicious and normal sample A (lines 3.b and 

3.e). Then, we compute a score based on found permissions in A by summing their occurrence gaps within the 

malicious dataset (lines 3.b and 3.e). This score is exploited to check whether the sample is correctly classified 

or not. Several metrics are saved for each threshold (lines 3.c and 3.f). They are True Positive (TP), False 

Negative (FN), True Negative (TN), False Negative (FN), Accuracy, Precision for malware, Precision for 

normal applications and Recall (line 3.g). We finally select the threshold with acceptable accuracy, precisions 

and recall simultaneously (line 4). This condition is not exclusive because accuracy alone is not enough for 

class-imbalanced dataset. That is why we couple the other metrics such as precision and recall. 

3.3. Malware detection  

This phase aims to decide whether an application is malicious or benign based on the selected threshold  .  

We test the condition 
              

 
  . If it is satisfied then the application is malware. Otherwise, it is a 

benign application.  

 0.9 < accuracy <1, the approach is  excellent 

 0.8 < accuracy <0.9, the approach  is  good 

 0.7 < accuracy <0.8, the approach  is  acceptable 

 0.6 < accuracy <0.7, the approach is not good  

4. Experiments and results 

This section describes experiments and discusses results. 

4.1. Datasets 

We have gathered 1252 samples including 626 malicious and 626 benign applications. The dataset of malicious 

samples is split into 300 training samples to determine the threshold and 326 testing samples to evaluate the 

model. Likewise, the dataset of benign samples is split into 300 training samples to determine the threshold and 

326 testing samples to evaluate the model. We have ensured that malicious and benign samples are disjoints as 

well as both training and testing for malicious and normal. We proceeded by checking the contents and hashed 

of each application. We collected the malicious samples from the Android malware dataset CICAndMal2017
b
. 

We collected the benign samples from Google Play. 

Tools exploited  

                                                           
b
 https://www.unb.ca/cic/datasets/andmal2017.html  

https://www.unb.ca/cic/datasets/andmal2017.html
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We have used the apktool 2.3.4 to reverse engineer applications from binary into readable data. Moreover, we 

used Python 2.7 with pandas library, numpi, csv, lxml and other libraries to dissect permissions of applications. 

4.2. Threshold determination 

We have experimented this phase with 300 malicious and 300 benign samples. Details of extraction are 

available in the Github page dedicated to this study [15]. A script written in Python has been used to automate 

the threshold process. The ADN of the whole malware with occurrences of each permission is also available in 

[15]. Table 2 shows the results obtained. We see that more the threshold grows more the precision for positive 

and recall for negative tend to 1. It means in this case that the model is more precise to detect malware. In the 

contrary, the model is more precise for detection of benign applications when the threshold tends to zero 

(precision for negative). However, decision making is not made based on metrics taken separately and should be 

optimal for malware and benign applications simultaneously. 

Table 2: Experiments for the threshold determination 

We observe that that the lowest recall gap is 0.05 and two thresholds correspond to it. The first is 0.5 and the 

Thres

hold 
TP FN TN FP 

Precision 

for 

positive 

Precision 

for 

negative 

Recall 

for 

negative 

Recall for 

positive 

Diff_R

ecall 

Accur

acy 

0.05 293 7 55 245 0,54 0,88 0,18 0,97 0,79 0,58 

0.1 293 7 68 232 0,55 0,90 0,22 0,97 0,75 0,60 

0.15 282 18 83 217 0,56 0,82 0,27 0,94 0,66 0,60 

0.2 273 27 99 201 0,57 0,78 0,33 0,91 0,58 0,62 

0.25 266 34 126 174 0,60 0,78 0,42 0,88 0,46 0,65 

0.3 264 36 150 150 0,63 0,80 0,5 0,88 0,38 0,69 

0.35 260 40 168 132 0,66 0,80 0,56 0,86 0,30 0,71 

0.4 256 44 195 105 0,70 0,81 0,65 0,85 0,20 0,75 

0.45 248 52 217 83 0,74 0,80 0,72 0,82 0,10 0,77 

0.5 247 53 232 68 0,78 0,81 0,77 0,82 0,05 0,79 

0.55 229 71 244 56 0,80 0,77 0,81 0,76 0,05 0,78 

0.6 222 78 260 40 0,84 0,76 0,86 0,74 0,12 0,80 

0.65 212 88 280 20 0,91 0,76 0,93 0,70 0,22 0,82 

0.7 206 94 283 17 0,92 0,75 0,94 0,68 0,25 0,81 

0.75 184 116 285 15 0,92 0,71 0,95 0,61 0,33 0,78 

0.8 163 137 288 12 0,93 0,677 0,96 0,54 0,41 0,75 

0.85 149 151 289 11 0,93 0,65 0,96 0,49 0,46 0,73 

0.9 135 165 292 8 0,94 0,63 0,97 0,45 0,52 0,71 

0.95 131 169 293 7 0,94 0,63 0,97 0,43 0,54 0,70 
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second 0.55. According to Algorithm 1, we take the mean of both. That means, the threshold is 0.525. This 

threshold will be used for classification. 

4.3. Evaluation of classification 

Two new distinct datasets are exploited for testing the similarity approach. Table 3 is obtained with 234 

malicious samples and 234 normal samples under a threshold of 0.525. 

Table 3: Performance results 

Thresho

ld 
TP 

F

N 

T

N 

F

P 

Precision for 

positive 

Precision for 

negative 

Recall for 

negative 

Recall for 

positive 

Accura

cy 

0.525 
19

4 
40 

17

7 

5

7 
0,71 0,81 0,69 0,82 0,79 

This model is accurate with 79% of correct detections with an average precision of 76%. The model is more 

precise to detect normal (81%) than malware (71%). However, the model is able to correctly observe 82% of 

malware (recall of 82%).  Although these results demonstrate that our approach is reliable, we note that forty 

malware and 57 benign applications that are mistakenly classified. An association with features such API and 

code monitoring as well as runtime analysis can reveal other traces to improve this classification.  

5. Related work 

Several authors have made two orientations to identify malware based on permissions. The first orientation 

includes works which rely only permissions to raise risk levels to assist users being aware. Sarma and his 

colleagues [6] propose an approach using the permissions requested by an application, its category and what 

permissions are requested by other applications in the same category to better inform users about the risks of 

installing this application really fits with its objectives. PUREDroid [10] evaluates the security risk related to 

granted dangerous permissions as well as their negative impact. Al Jutail and his colleagues [11] propose to 

build an application to monitor for dangers associated to permissions of the scanned applications. Then, this tool 

presents results in an understandable manner to the normal user who can therefore determine whether an 

application can affect privacy or not. The second orientation includes works which combine permissions to 

other features using machine learning. Its main objective is to improve detection performance. DroidAPIMiner 

[9] associates dangerous APIs and critical permissions, and other features with machine learning algorithms. Liu 

and Liu […] rely on requested permissions and required permissions as features of machine learning techniques 

to classify an application as benign or malicious. Drebin [16] associates static analysis of permissions and 

Application Programming Interfaces (APIs) with machine learning to identify malware. SaMaDroid [8] 

proposes a three-level detection architecture which extracts requested permissions, APIs and other features from 

the manifest. These features, once structured, are transferred to the learning process to guess the class of the 

application. Likewise, SigPID [4] retrieves significant permissions from applications, structures this information 

to effectively detect malware using supervised learning algorithms. This work does not aim to raise awareness 

about permissions or to look for features providing better performance. But, it relies on the sequence alignment 
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principle to find the optimal score similarity between the query application and the permission DNAs of 

malware. It is more lightweight than the second orientation’s works.  

6. Conclusion  

This work has proposed a malware detection based on the alignment of permissions. This work relies on 

sequence alignment principle to determine similarity based on permissions for malicious and normal families. A 

classification threshold based on the similarity score between the DNA of the tested application and the family 

DNAs, is determined. Experiments has been realized on dataset of 600 samples (300 training and 300 testing) 

and 752 normal (326 training and 326 testing) applications. The proposed approach is able to recognize testing 

samples (either malware or normal) with an accuracy of 79.58. This work reveals that Android applications are 

somehow similar based on their permissions. However, we still have to improve by combining with other 

approaches and other features to improve detection performance. 
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