

34

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

Crowdsourced Machine Learning Based Recommender

for Software Design Patterns

Sunbul Sajid Khowaja
a
*, Dr Qasim Ali

b
, Erum Hamid

c
, Rajesh Kumar

d
, Gul

Bano
e
, Jatendar Dharani

f
, Isma Farah

g
, Zainab Umair

h

a,b,e,f,g,h
Software Engineering Department, Mehran University of Engineering and Technology, Jamshoro 76020,

Pakistan

c
Beijing University of Posts and Telecommunication, Beijing, China

d
Hamdard University, Karachi, Pakistan

a
Email: sunbul.khuwaja@gmail.com,

b
Email: qasim.arain@faculty.muet.edu.pk

c
Email: zubedierum@hotmail.com,

d
Email: rajesh.kumar@hamdard.edu.pk

e
Email: asmagul_gh@yahoo.com,

f
Email: jatendurdharani@hotmail.com

g
Email: isma.farah@faculty.muet.edu.pk,

h
Email: zainabumair11sw38@gmail.com

Abstract

Software technology has become an essential part of human lives today. The role of software Engineers in

making this technology as success is very fundamental. In software Engineering, the toughest stage is to design

software as there is no particular rule or formula to covert requirements into design representation. A designer

designs software using skills, critical thinking ability and previous experience only. To make this process easy,

the design patterns came into existence which are the solutions that can be used repetitively to solve design

problems. There have been several pieces of research presented regarding design Patterns but it is hard to find

research regarding how the patterns are perceived and used in industries today and what nature of application

uses which specific patterns. This paper uses a crowdsourced approach to acquire the finest practices that are

being used in industries today including which quality attributes are affected most by the implementation of

these patterns and which patterns are suitable for what type of applications. It also uses a machine learning

supervised algorithm (Matchbox Recommender) to predict suitable design pattern for different nature of

applications.

Keywords: Crowdsourcing; Design patterns; Machine Learning; Software Quality; Matchbox recommender; T-

test.

* Corresponding author.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

35

1. Introduction

The 21st century is known to be the golden era for computer technology as it has covered almost every single

part of the necessities today. To continue this comfort for its users, software developers have left no stone

unturned to improve this technology. To achieve fruitful results, it is necessary to make sure that the software

achieves its intended purpose and quality within feasible time and budget [10]. SQA (Software quality

assurance) is a technique that ensures the achievement of desired quality used with SDLC (software

development lifecycle) steps [18]. Among SDLC steps the design step is perceived as more complicated because

there is no algorithmic rule to transform theoretical requirements into diagrammatic design. The only approach

can be used is to use some techniques, previous experience, and Design Patterns. Design Patterns are repeatedly

occurring solutions to design problems. Or it can be said that design patterns convert problem domain into the

solution domain [17].

The purpose of this research was to investigate documented design problems and how their implementation

influences software products’ quality. The technique used to do it is known as the Crowdsourced Design

method. Crowd-wisdom is a type of crowdsourcing practice. Crowdsourcing is a method to involve various

participants into a common chore to get a collective result and crowd wisdom is crowdsourcing by using a

questionnaire survey approach [12]. This research has been mainly focused on the following main objectives:

 To identify which design patterns are best suitable for what type of applications (i-e web app, android,

hybrid, etc.) to achieve the desired quality application,

 To analyze that which design patterns (i-e structural, Behavioral or creational) effect which quality

attributes the most like maintainability, reliability or more,

 To what extent (in percent) the design patterns categories affect quality attributes of the end product. To

recognize that which design patterns are more frequently being used in industries today than others?

The previous work has many limitations some of them are discussed below: The comparison of Design Patterns

exists but “which are the most feasible ones or used commonly in industries” is still unclear. Also, Most of the

new designers get confused of what patterns should be chosen which would provide better quality than others.

In the initial stage of development, the project’s final appearance is usually vague so this research would solve

this issue by recommending patterns for particular end-product’s preferred quality attributes. After this

recommendation the designers or developers will have clear idea that what kind of quality or types will be seen

in systems final version. In this work, we examine the facts that can affect the quality of software and we find

out commonly used design patterns in the software industry. Also, we propose some particular patterns that can

be used while designing a particular type of application. We have converted our research questions into survey

questions. After that, we have used a Recommender (which uses Supervised Machine learning algorithm) to

predict the best suitable patterns required to design a particular type of application. Machine Learning makes the

machine to learn the environment itself without defining it separately [22]. The outcomes show the listed

contributions that can help to improve the selection of suitable design patterns for the required product and helps

new designers in understanding suitable patterns.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

36

2. Related Work

As design pattern is a vital part of software development, various researches focus on analyzing the ways of

choosing the suitable design pattern from a pool of patterns. In 2016, an automated system based on a Fuzzy c-

means unsupervised learning technique was proposed to select and recommend the most suitable design pattern

to in-experienced designers [1]. It works by determining the resemblance of multiple objects whereas our

research uses a supervised machine learning approach and works on a real dataset. In 2018 M Noman Riaz

performed a comparative study about the influence of design patterns on software quality. He has stated that

there are mainly four attributes (fault proneness, change proneness, and evolution, maintainability, and

performance) that are more focused in the literature while any consensus is not present on their effect. He has

concluded in his paper that there is a negative impression of the design pattern on three attributes (evolution,

proneness, and maintainability). Also, the results of performance attribute and change proneness were varied

from one another so the researcher declares it as challenging to make the judgment for these attributes [4]. These

were limited quality attributes while our research works on all the quality attributes that were defined by ISO

9126. Aslı Sarı, Ayşe Tosun and Gülfem Işıklar Alptekin in [5] performed a literature review on crowdsourcing

in software engineering. They highlighted the crowdsourced design as a special type of crowdsourcing and

reviewed certain crowdsourced design platforms like Topcoder and 99designs. They also stated that yahoo

Answers is one of the popular platforms of crowd wisdom. We have used google form and survey monkey for

our crowdsourced based data collection. In [7] the authors Relate pattern with quality of code. They interpreted

that the existence of design patterns pulls down the figure of code smell occurrences. Moreover, they indicated

that State Strategy, Factory-method, and Adaptor-command are less probable to be relative to the smelly

code. We have identified patterns effect on individual quality attributes rather than evaluating the overall quality

of the product. In [19, 20] the system to recommend suitable design patterns was introduced. It covered all GOF

patterns. It took a textual description of a problem as input and guided a designer to select an appropriate

pattern. Whereas our research takes the real data as input, processes using machine learning and then

recommends appropriate design patterns. In [22] the investigators explained the use of Machine learning

algorithms in recommender systems. They identified the trends which are being used in machine learning for

recommender systems. The activities which have been performed in our research were referred from this paper.

In [25] the Research predicts re-tweets of an original tweet by using a matchbox recommender algorithm and

our research predicts suitable design patterns to be used for different application types by using the same

algorithm but different factors.

3. Methodology

The research was comprised of the following steps as shown in figure 1.

3.1. Questionnaire Design

The Research assumptions which contributed towards the design of a questionnaire were made at the start that

was:

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

37

R-1: Some design patterns are more commonly used in design decisions to produce a high-quality product while

others are very rare.

R-2: Among all quality attributes, the maintainability attribute is affected the most from design pattern

decisions.

R-3: The choice of best design pattern for the product reduces higher the chances of getting a poor quality.

R-4: Some design patterns are only feasible for certain types of applications and might be infeasible for other

types of applications. The application types we consider for R4 are Web app, Mobile app, and Hybrid app.

The survey questionnaires were designed by interviewing with professionals, getting guidance from related

work, following tutorials and based on previous field understanding. All the questions of surveys were sensibly

designed to fulfill the goal of our research. The online forms were created and fetched to be solved by designers

of software industries. The survey questionnaire links are: “https://www.surveymonkey.com/r/FNR6JL7” and

“https://forms.gle/cPmVDDisX8TVhQ6w9”.

3.2. Responses Taken

The surveys were conducted, then all results were evaluated and conclusions were made in accordance. We

clarified the respondents about the aim of our research. The survey links were posted through E-mail, Facebook

and WhatsApp. After the completion of the survey, the answers were validated by using a t-test.

3.3. Data Pre-Processing

Consequently, the data was pre-processed to be validated and then to be uploaded on the cloud. Pre-processing

is an important step before machine learning is applied. It discards out-of-range values, missing values, and

impossible data combinations.

The pre-processing is further divided into the following steps:

3.4. Data Validation

 Data cleaning: A practice of identifying and modifying (or eliminating) corrupt or inaccurate data from a

dataset.

 Data editing: A practice concerning the review and correction of collected survey records.

 Data reduction: A makeover of statistical or categorical figures derived into a rectified, well-arranged, and

shortened form.

 Data wrangling: A practice of converting and charting data from raw format to a more appropriate format

to make it valuable for further process.

3.5. Applying Machine Learning

https://www.surveymonkey.com/r/FNR6JL7
https://forms.gle/cPmVDDisX8TVhQ6w9

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

38

MS azure [24] was used as the ML platform. It is a Microsoft supported cloud service which provides many

services (like SAAS, PAAS, and IAAS). It supports many apps and programming. In Azure, The Matchbox

recommender algorithm was applied to data. This recommender uses the Matchbox algorithm to train the

Bayesian recommender [9].

Figure 1: System Diagram

4. Results and Discussion

An online survey was conducted by leading software companies and Universities in Hyderabad, Jamshoro, and

Karachi. In the survey 600 (samples) responses were selected for analysis. The analysis and validation were

done using the SPSS tool. Regarding Gender, Age, roles, Experience, Location are shown in the following

figures and tables.

Table 1: Gender wise responses ratio

Gender Responses

Male 324

Female 276

Table 1 shows the Number of Male and Female respondents in our survey.

Figure 2: Gender Ratio Graph

Figure: 2 shows the percentage statistic of male and female survey respondents. 54% were male respondents and

46%were female respondents.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

39

Table 2: Age wise responses ratio

Age

Group

Respondents

21-30 450

31-40 114

41-50 36

Table: 2 shows the age-wise statistics of our respondents. It indicates that the 21-30 age group people were our

major contributors.

Figure 3: Age Ratio Graph

Figure 3 shows the percent of respondents WRT age groups.

Table 3: Role of wise responses ratio

Roles Respondents

Android Developer 54

Applications Developer 12

Graphic Designer 66

Internee 114

IT officer or employee 12

Junior Software Engineer 174

Senior Software Engineer 84

Student 84

Table 3 shows the designations of our respondents. Our major contributors were junior software engineers (174)

and Internees (114). The other contributors were Android and application developers, graphic designers, IT

employees, senior software engineers from Hyderabad and Karachi (Pakistan). The Student respondents were

from Mehran UET and the University Of Sindh, Jamshoro.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

40

Figure 4: Roles ratio Graph

Figure 4 shows the percent ratio of all the respondents concerning their designation or roles.

Table 4: Experience wise responses ratio

Experience Respondents

1 year 78

2-5 years 264

6-8years 36

9-10years 24

<1year 198

The table4 shows experience wise distribution of our respondents. Most of the respondents had 2 to 5 years of

work experience. The second-highest share was less than one year which included internees and students. The

least part was senior people which is 24 respondents only.

Figure 5: Experience ratio Graph

Figure 5 shows the percent distribution of our respondents in year wise experience categories.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

41

Table 5: Location wise responses ratio

Location Respondents

Hyderabad 204

Karachi 366

Jamshoro 198

The table 5 shows the locations of our number of respondents. The main contribution was from Karachi as it has

many software industries. The second-highest number of respondents were from Hyderabad software employees

and internees. The least contribution was from students and the internees of Jamshoro.

Figure 6: Location Ratio Graph

Figure 6 shows the location-wise share of respondents in percentage.

4.1. Question wise responses and validations

We asked our respondents which patterns they have ever used (or are suitable) in Mobile app (Q1), web app(Q2)

and hybrid app (Q3) designing. Also, we asked questions about which quality factors were supported by what

kind of design patterns (Q4 to Q8).To validate the survey answers we used the T-test method in the SPSS tool.

For the T-test, we took confidence interval values like 95% and builder pattern values for comparison to other

pattern values. As a rule, all the significant values of output which were less than 0.95 were counted as valid and

the values greater than this were counted as invalid. Also, we have observed that the zero significant values

were not exactly zero in real but were too small numbers so those were shown as zero.

The responses and validations are shown in the following figures.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

42

Figure 7: Mobile app suitability responses for Patterns

Table 6: Validation values For Mobile app responses

Pattern Signif

icance

value

Pattern Signif

icanc

e

Value

1.Abstract

factory

.837 12.Strategy .794

2.Bridge .837 13.Template .808

3.Composite .770 14.Visitor .694

4.Chain of

Responsibility

.770 15.Prototype .808

5.Command .000 16.Singleton .837

6.Interpretor .837 17.Factory .770

7.Iterator .677 18.Adapter .749

8.Mediator .770 19.Facade .794

9.Memento .000 20.Flyweight .794

10.Observer .702 21.Proxy .770

11.State .837 22.Decorator .770

The figure 7. Shows the patterns which are or are not suitable to be used for mobile apps. The Table 6 shows the

significant values of validation of patterns. Since all values are lesser than 0.95, all responses are valid for this

question.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

43

Figure 8: Web app suitability responses for Patterns

Table 7: Validation values For Web app responses

Pattern Signif

icance

value

Pattern Significa

nce

Value

1.Abstract

factory

.000 12.Strategy .000

2.Bridge .000 13.Template .000

3.Composite .684 14.Visitor .000

4.Chain of

Responsibility

.000 15.Prototype Invalid

5.Command .000 16.Singleton .000

6.Interpretor .000 17.Factory .000

7.Iterator .000 18.Adapter .000

8.Mediator .000 19.Facade .000

9.Memento .000 20.Flyweight Invalid

10.Observer .000 21.Proxy .000

11.State .741 22.Decorator .000

The figure 8 shows the patterns which are or are not suitable to be used for web apps. Table7 shows the

significant values of validation of patterns. Responses for Prototype and flyweight patterns are invalid here. All

other values are lesser than 0.95 so all those are valid.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

44

Figure 9: Hybrid app suitability responses for Patterns

Table 8: Validation values For Hybrid app responses

Pattern Signifi

cance

value

Pattern Significa

nce

Value

1.Abstract

factory

.000 12.Strategy .770

2.Bridge .720 13.Template .000

3.Composite .720 14.Visitor .000

4.Chain of

Responsibility

.677 15.Prototype .001

5.Command .640 16.Singleton .000

6.Interpretor .720 17.Factory .002

7.Iterator .677 18.Adapter .000

8.Mediator .000 19.Facade .216

9.Memento .000 20.Flyweight .000

10.Observer .640 21.Proxy .000

11.State .677 22.Decorator .720

The figure 9 shows the patterns which are or are not suitable to be used for Hybrid apps. The Table 8 shows the

significant values of validation of patterns for hybrid apps. Since all values are lesser than 0.95, all responses are

valid for this question3.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

45

Figure 10: High-Security suitability responses for Patterns

Table 9: Validation values For High-Security responses

Pattern Signifi

cance

value

Pattern Significa

nce

Value

1.Abstract

factory

Invalid 12.Strategy .003

2.Bridge .000 13.Template .000

3.Composite .000 14.Visitor .000

4.Chain of

Responsibility

.000 15.Prototype .000

5.Command .000 16.Singleton .000

6.Interpretor Invalid 17.Factory .000

7.Iterator .000 18.Adapter .720

8.Mediator .001 19.Facade .700

9.Memento .007 20.Flyweight .000

10.Observer Invalid 21.Proxy .000

11.State .004 22.Decorator .000

The figure 10 shows the patterns which High-security feature for applications. Table 9 shows the significant

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

46

values of validation of patterns. Interpreter and observer are invalid here and since all other values are lesser

than 0.95, all other responses are valid for question4.

Figure 11: Portability suitability responses for Patterns

Table 10: Validation values For Portability suitability responses

Pattern Signifi

cance

value

Pattern Significa

nce

Value

1.Abstract

factory

.009 12.Strategy .000

2.Bridge .707 13.Template .204

3.Composite .000 14.Visitor .466

4.Chain of

Responsibility

.000 15.Prototype .005

5.Command .001 16.Singleton .000

6.Interpretor .809 17.Factory .000

7.Iterator .760 18.Adapter .000

8.Mediator .707 19.Facade Invalid

9.Memento .000 20.Flyweight .000

10.Observer .800 21.Proxy .800

11.State Invalid 22.Decorator .000

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

47

The figure 11 Shows the patterns which support the portability feature. The table 10 shows the significant values

of validation of patterns for portability. Since all values are lesser than 0.95, all responses are valid for

question5.

Figure 12: High-Reliability suitability responses for Patterns

Table 11: Validation values For High Reliability responses

Pattern Signifi

cance

value

Pattern Significa

nce

Value

1.Abstract

factory

.000 12.Strategy .000

2.Bridge .876 13.Template .000

3.Composite .700 14.Visitor .000

4.Chain of

Responsibility

.000 15.Prototype .000

5.Command .000 16.Singleton .000

6.Interpretor .000 17.Factory .707

7.Iterator .000 18.Adapter .000

8.Mediator .000 19.Facade .877

9.Memento .009 20.Flyweight .000

10.Observer .001 21.Proxy .000

11.State .000 22.Decorator .000

The figure 12 shows the patterns which provide a high-reliability feature. The table 11 shows the significant

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

48

values of validation of patterns that provide high reliability. Since all values are lesser than 0.95, all responses

are valid for question7.

From the survey, we asked about patterns that support high maintainability (Q6) and high efficiency (Q8). The

answers were 100% for both so we haven’t validated since it is obvious that all answers are valid (100%).

4.2. Recommender System

The recommender system was created on MS azure which recommends some best suitable patterns to users

concerning application types and quality attributes. It uses all the above survey responses dataset and Splits (into

80, 20). Total three datasets were created. First contained names of patterns (patternID), factors (factorID) and

their ratings (survey responses) into binary form. The second dataset had the information about pattern category

(structural, behavioral and creational). The third dataset had factorID names (i-e Security, Portability,

Maintainability, reliability, efficiency) and detail. The data was trained and experimented using the Train

Matchbox Recommender algorithm as shown in figure 13.

Figure 13: Experiment diagram of Design Patterns recommender

Figure 14: Recommender output for Mobile app suitability Patterns

The figure 14 shows patterns recommended from the experiment for mobile applications. These are the most

suitable patterns to be considered for mobile app designing.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

49

Figure 15: Recommender output for Hybrid app suitability Patterns

Figure 16: Recommender output for Web app suitability Patterns

Figure 17: Recommender output for Quality attributes’ suitability Patterns

The figure 15 shows the eight patterns highly recommended for hybrid application designing. The figure 16

shows the eight patterns highly recommended for mobile application designing. The figure 17 shows the

patterns recommended if a user prefers high maintainability, high reliability or high efficiency for their system.

Or if a user prefers to keep a portability feature then corresponding patterns are more suitable. Whereas the

survey responses for security preferred patterns were lesser therefore it wasn’t recommended by our ML

recommender system.

5. Recommendation of Patterns

Table 12 and Table 13 Show the lists of recommended patterns for particular application types and quality

attributes respectively.

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

50

Table 12: App Types and Recommended patterns

Application

Type

Recommended Patterns

Web App Builder, Visitor, Factory Method,

Strategy, Adapter, Template,

Interpreter, Observer

Mobile

App

Façade, Composite, Strategy,

Singleton, Adapter, Chain of

Responsibility, Interpreter,

Decorator

Hybrid

App

Factory Method, State, Command,

Decorator, Façade, Strategy,

Singleton, Interpreter

Table 13: Attributes and Recommended Patterns

Quality

Attribute

Recommended Patterns

Maintainability,

Efficiency,

Portability

Chain Of Responsibility,

Strategy, Factory Method,

Builder, Visitor, Singleton,

composite, Interpreter

Reliability Strategy, Chain Of

responsibility, Interpreter,

composite, Command,

Decorator, Façade, State

6. Conclusion

The crowdsourced tactic specified in this paper was directed to discover optimum practices of patterns in

software Domain and their effect on quality. The assumptions were validated or invalidated based on responses

collected from the crowd of software engineers and ML experiments. This research determines that 8 out of 23

patterns are highly recommended in industries for each (Web, Mobile or Hybrid) type of applications. It is

established from the survey that maintainability is the most affected quality attribute among all the attributes as

its answers were 100 percent from the survey. Additionally, the preference of Patterns for preferred quality

attributes (like Maintainability, reliability, portability, and efficiency) was also identified from the ML

recommender system. This finding of exact patterns guides the designers to concentrate on these patterns more

than others while focusing on software product’s desired nature and preferred quality to be gained.

References

[1]. S. Hussain, J. Keung, A. A. Khan, and K. E. Bennin, “A Methodology to Automate the Selection of

Design Patterns,” 2016 IEEE 40th Annual Computer Software and Applications Conference

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

51

(COMPSAC), 2016.

[2]. B. B. Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, “The state of the art on design patterns: A

systematic mapping of the literature,” Journal of Systems and Software, vol. 125, pp. 93–118, 2017

[3]. F. Khomh and Y.-G. Gueheneuc, “Design patterns impact on software quality: Where are the

theories?,” 2018 IEEE 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER), 2018

[4]. M. N. Riaz, “Impact of software design patterns on the quality of software: A comparative study,”

2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),

2018.

[5]. A. Sarı, A. Tosun, and G. I. Alptekin, “A systematic literature review on crowdsourcing in software

engineering,” Journal of Systems and Software, vol. 153, pp. 200–219, 2019..

[6]. B. Lin, “Crowdsourced software development and maintenance,” Proceedings of the 40th International

Conference on Software Engineering Companion Proceeedings - ICSE 18, 2018.

[7]. B. Walter and T. Alkhaeir, “The relationship between design patterns and code smells: An exploratory

study,” Information and Software Technology, vol. 74, pp. 127–142, 2016.

[8]. F. Khomh and Y.-G. Gueheneuce, “Do Design Patterns Impact Software Quality Positively?,” 2008

12th European Conference on Software Maintenance and Reengineering, 2008

[9]. Gautam, Shikha, and Brijendra Singh. "Assessing the Theoretical Impact of Design Patterns on

Software Quality." Software Quality Professional 21.1 (2018).

[10]. Pressman, Roger S. Software engineering: a practitioner's approach. Palgrave macmillan, 2005.

[11]. D. Yu, Z. Zhou, and Y. Wang, “Crowdsourcing Software Task Assignment Method for Collaborative

Development,” IEEE Access, vol. 7, pp. 35743–35754, 2019.

[12]. A. Sarı, A. Tosun, and G. I. Alptekin, “A systematic literature review on crowdsourcing in software

engineering,” Journal of Systems and Software, vol. 153, pp. 200–219, 2019

[13]. R. Qiao, S. Yan, and B. Shen, “A Reinforcement Learning Solution to Cold-Start Problem in Software

Crowdsourcing Recommendations,” 2018 IEEE International Conference on Progress in Informatics

and Computing (PIC), 2018.

[14]. A. J. Paramita and M. Z. C. Candra, “CODECOD: Crowdsourcing Platform for Code Smell

Detection,” 2018 5th International Conference on Data and Software Engineering (ICoDSE), 2018

[15]. X. Zhang, B. Gong, H. Ni, Z. Liang, and J. Su, “Identifying Participants Characteristics Influencing

Participant Estimation in Knowledge-Intensive Crowdsourcing,” 2019 8th International Conference on

Industrial Technology and Management (ICITM), 2019.

[16]. J. Wang, S. Wang, J. Chen, T. Menzies, Q. Cui, M. Xie, and Q. Wang, “Characterizing Crowds to

Better Optimize Worker Recommendation in Crowdsourced Testing,” IEEE Transactions on Software

Engineering, pp. 1–1, 2019.

[17]. E. Gamma, R. Helm, and R. Johnson, Design patterns elements of reusable object oriented software.

Reading: Addison Wesley, 1998.

[18]. Claude Y. Laporte and Alain April. “Software Quality Assurance (1st ed.)”. Wiley-IEEE Computer

Society Pr, 2015.

[19]. S. M. H. Hasheminejad and S. Jalili, “Design patterns selection: An automatic two-phase method,”

International Journal of Computer (IJC) (2020) Volume 36, No 1, pp 34-52

52

Journal of Systems and Software, vol. 85, no. 2, pp. 408–424, 2012.

[20]. S. Hussain, J. Keung, and A. A. Khan, “Software design patterns classification and selection using text

categorization approach,” Applied Soft Computing, vol. 58, pp. 225–244, 2017

[21]. R. Aliady and S. Alyahya, “Crowdsourced Software Design Platforms: Critical Assessment,” Journal

of Computer Science, vol. 14, no. 4, pp. 546–561, Jan. 2018.

[22]. Portugal, P. Alencar, and D. Cowan, “The use of machine learning algorithms in recommender

systems: A systematic review,” Expert Systems with Applications, vol. 97, pp. 205–227, 2018.

[23]. S. Belouafa, F. Habti, S. Benhar, B. Belafkih, S. Tayane, S. Hamdouch, A. Bennamara, and A.

Abourriche, “Statistical tools and approaches to validate analytical methods: methodology and practical

examples★,” International Journal of Metrology and Quality Engineering, vol. 8, p. 9, 2017

[24]. T. Redkar and T. Guidici, Windows Azure Platform. Berkeley, CA: Apress, 2011.

[25]. S. Unankard, “Prediction of Re-tweeting Activities in Social Networks Based on Event Popularity and

User Connectivity,” Machine Learning and Data Mining in Pattern Recognition Lecture Notes in

Computer Science, pp. 357–368, 2018.

[26]. D. H. Stern, R. Herbrich, and T. Graepel, “Matchbox,” Proceedings of the 18th international

conference on World wide web - WWW 09, 2009.

[27]. Using SPSS to Perform Statistical Analyses,” An Introductory Guide to SPSS® for Windows®, pp.

61–90.

[28]. Krzywinski, Martin, and Naomi Altman. "Points of significance: Significance, P values and t-tests."

(2013): 1041.

[29]. N. Pathan, Q. Ali, S. Iftikhar, G. Batool, and I. Memon, “Personality Type Recommendation System

using Crowdsourcing,” 2019 2nd International Conference on Computing, Mathematics and

Engineering Technologies (iCoMET), 2019.

[30]. S. Taj, Q. Arain, I. Memon, and A. Zubedi, “To apply Data Mining for Classification of Crowd sourced

Software Requirements,” Proceedings of the 2019 8th International Conference on Software and

Information Engineering - ICSIE 19, 2019.

[31]. Z. U. Kamangar, U. A. Kamangar, Q. Ali, I. Farah, S. Nizamani, and T. H. Ali, “To enhance

Effectiveness of Crowdsource Software Testing by applying Personality Types,” Proceedings of the

2019 8th International Conference on Software and Information Engineering - ICSIE 19, 2019.

[32]. S. S. Memon, A. S. Shah, I. H. Memon, Q. A. Arain, G. M. Morio, and W. A. Channa, “To Explore the

Project Management towards Academic Discipline and Practical Approaches,” ENGINEERING

SCIENCE AND TECHNOLOGY INTERNATIONAL RESEARCH JOURNAL, VOL.3, NO.3, Sep.

2019.

[33]. I. Memon, H. Fazal, R. A. Shaikh, Q. A. Arain, and T. K. Khatri, “Big data, Cloud and 5G networks

create smart and intelligent world: A survey,” University of Sindh Journal of Information and

Communication Technology , pp. 185–192, 2019.

[34]. K. N. Soomro, rabeea jaffri, I. Farah, and S. A. undefined, “Predictive analysis for employee churn in

software industry using exploratory data analysis,” 1st international conference on computational

sciences and technologies, Mehran University of Engineering and technology, 2019.

