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Abstract 

Software technology has become an essential part of human lives today. The role of software Engineers in 

making this technology as success is very fundamental. In software Engineering, the toughest stage is to design 

software as there is no particular rule or formula to covert requirements into design representation. A designer 

designs software using skills, critical thinking ability and previous experience only. To make this process easy, 

the design patterns came into existence which are the solutions that can be used repetitively to solve design 

problems. There have been several pieces of research presented regarding design Patterns but it is hard to find 

research regarding how the patterns are perceived and used in industries today and what nature of application 

uses which specific patterns. This paper uses a crowdsourced approach to acquire the finest practices that are 

being used in industries today including which quality attributes are affected most by the implementation of 

these patterns and which patterns are suitable for what type of applications. It also uses a machine learning 

supervised algorithm (Matchbox Recommender) to predict suitable design pattern for different nature of 

applications. 

Keywords: Crowdsourcing; Design patterns; Machine Learning; Software Quality; Matchbox recommender; T-

test. 
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1. Introduction 

The 21st century is known to be the golden era for computer technology as it has covered almost every single 

part of the necessities today. To continue this comfort for its users, software developers have left no stone 

unturned to improve this technology. To achieve fruitful results, it is necessary to make sure that the software 

achieves its intended purpose and quality within feasible time and budget [10]. SQA (Software quality 

assurance) is a technique that ensures the achievement of desired quality used with SDLC (software 

development lifecycle) steps [18]. Among SDLC steps the design step is perceived as more complicated because 

there is no algorithmic rule to transform theoretical requirements into diagrammatic design. The only approach 

can be used is to use some techniques, previous experience, and Design Patterns. Design Patterns are repeatedly 

occurring solutions to design problems. Or it can be said that design patterns convert problem domain into the 

solution domain [17].  

The purpose of this research was to investigate documented design problems and how their implementation 

influences software products’ quality. The technique used to do it is known as the Crowdsourced Design 

method. Crowd-wisdom is a type of crowdsourcing practice. Crowdsourcing is a method to involve various 

participants into a common chore to get a collective result and crowd wisdom is crowdsourcing by using a 

questionnaire survey approach [12]. This research has been mainly focused on the following main objectives: 

 To identify which design patterns are best suitable for what type of applications (i-e web app, android, 

hybrid, etc.) to achieve the desired quality application, 

 To analyze that which design patterns (i-e structural, Behavioral or creational) effect which quality 

attributes the most like maintainability, reliability or more, 

 To what extent (in percent) the design patterns categories affect quality attributes of the end product. To 

recognize that which design patterns are more frequently being used in industries today than others? 

The previous work has many limitations some of them are discussed below: The comparison of Design Patterns 

exists but “which are the most feasible ones or used commonly in industries” is still unclear. Also, Most of the 

new designers get confused of what patterns should be chosen which would provide better quality than others. 

In the initial stage of development, the project’s final appearance is usually vague so this research would solve 

this issue by recommending patterns for particular end-product’s preferred quality attributes. After this 

recommendation the designers or developers will have clear idea that what kind of quality or types will be seen 

in systems final version. In this work, we examine the facts that can affect the quality of software and we find 

out commonly used design patterns in the software industry. Also, we propose some particular patterns that can 

be used while designing a particular type of application. We have converted our research questions into survey 

questions. After that, we have used a Recommender (which uses Supervised Machine learning algorithm) to 

predict the best suitable patterns required to design a particular type of application. Machine Learning makes the 

machine to learn the environment itself without defining it separately [22]. The outcomes show the listed 

contributions that can help to improve the selection of suitable design patterns for the required product and helps 

new designers in understanding suitable patterns. 
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2. Related Work 

As design pattern is a vital part of software development, various researches focus on analyzing the ways of 

choosing the suitable design pattern from a pool of patterns. In 2016, an automated system based on a Fuzzy c-

means unsupervised learning technique was proposed to select and recommend the most suitable design pattern 

to in-experienced designers [1]. It works by determining the resemblance of multiple objects whereas our 

research uses a supervised machine learning approach and works on a real dataset. In 2018 M Noman Riaz 

performed a comparative study about the influence of design patterns on software quality. He has stated that 

there are mainly four attributes (fault proneness, change proneness, and evolution, maintainability, and 

performance) that are more focused in the literature while any consensus is not present on their effect. He has 

concluded in his paper that there is a negative impression of the design pattern on three attributes (evolution, 

proneness, and maintainability). Also, the results of performance attribute and change proneness were varied 

from one another so the researcher declares it as challenging to make the judgment for these attributes [4]. These 

were limited quality attributes while our research works on all the quality attributes that were defined by ISO 

9126. Aslı Sarı, Ayşe Tosun and Gülfem Işıklar Alptekin in [5] performed a literature review on crowdsourcing 

in software engineering. They highlighted the crowdsourced design as a special type of crowdsourcing and 

reviewed certain crowdsourced design platforms like Topcoder and 99designs. They also stated that yahoo 

Answers is one of the popular platforms of crowd wisdom. We have used google form and survey monkey for 

our crowdsourced based data collection. In [7] the authors Relate pattern with quality of code. They interpreted 

that the existence of design patterns pulls down the figure of code smell occurrences. Moreover, they indicated 

that State Strategy, Factory-method, and Adaptor-command are less probable to be relative to the smelly 

code. We have identified patterns effect on individual quality attributes rather than evaluating the overall quality 

of the product. In [19, 20] the system to recommend suitable design patterns was introduced. It covered all GOF 

patterns. It took a textual description of a problem as input and guided a designer to select an appropriate 

pattern. Whereas our research takes the real data as input, processes using machine learning and then 

recommends appropriate design patterns. In [22] the investigators explained the use of Machine learning 

algorithms in recommender systems. They identified the trends which are being used in machine learning for 

recommender systems. The activities which have been performed in our research were referred from this paper. 

In [25] the Research predicts re-tweets of an original tweet by using a matchbox recommender algorithm and 

our research predicts suitable design patterns to be used for different application types by using the same 

algorithm but different factors. 

3. Methodology 

The research was comprised of the following steps as shown in figure 1. 

3.1. Questionnaire Design 

The Research assumptions which contributed towards the design of a questionnaire were made at the start that 

was: 
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R-1: Some design patterns are more commonly used in design decisions to produce a high-quality product while 

others are very rare. 

R-2: Among all quality attributes, the maintainability attribute is affected the most from design pattern 

decisions. 

R-3: The choice of best design pattern for the product reduces higher the chances of getting a poor quality. 

R-4: Some design patterns are only feasible for certain types of applications and might be infeasible for other 

types of applications. The application types we consider for R4 are Web app, Mobile app, and Hybrid app. 

The survey questionnaires were designed by interviewing with professionals, getting guidance from related 

work, following tutorials and based on previous field understanding. All the questions of surveys were sensibly 

designed to fulfill the goal of our research. The online forms were created and fetched to be solved by designers 

of software industries. The survey questionnaire links are: “https://www.surveymonkey.com/r/FNR6JL7” and 

“https://forms.gle/cPmVDDisX8TVhQ6w9”. 

3.2. Responses Taken 

The surveys were conducted, then all results were evaluated and conclusions were made in accordance. We 

clarified the respondents about the aim of our research. The survey links were posted through E-mail, Facebook 

and WhatsApp. After the completion of the survey, the answers were validated by using a t-test. 

3.3. Data Pre-Processing 

Consequently, the data was pre-processed to be validated and then to be uploaded on the cloud. Pre-processing 

is an important step before machine learning is applied. It discards out-of-range values, missing values, and 

impossible data combinations. 

The pre-processing is further divided into the following steps: 

3.4. Data Validation 

 Data cleaning: A practice of identifying and modifying (or eliminating) corrupt or inaccurate data from a 

dataset. 

 Data editing: A practice concerning the review and correction of collected survey records. 

 Data reduction: A makeover of statistical or categorical figures derived into a rectified, well-arranged, and 

shortened form. 

 Data wrangling: A practice of converting and charting data from raw format to a more appropriate format 

to make it valuable for further process. 

3.5. Applying Machine Learning 

https://www.surveymonkey.com/r/FNR6JL7
https://forms.gle/cPmVDDisX8TVhQ6w9


International Journal of Computer (IJC) (2020) Volume 36, No  1, pp 34-52 

38 

MS azure [24] was used as the ML platform. It is a Microsoft supported cloud service which provides many 

services (like SAAS, PAAS, and IAAS). It supports many apps and programming. In Azure, The Matchbox 

recommender algorithm was applied to data. This recommender uses the Matchbox algorithm to train the 

Bayesian recommender [9]. 

 

Figure 1: System Diagram 

4. Results and Discussion 

An online survey was conducted by leading software companies and Universities in Hyderabad, Jamshoro, and 

Karachi. In the survey 600 (samples) responses were selected for analysis. The analysis and validation were 

done using the SPSS tool. Regarding Gender, Age, roles, Experience, Location are shown in the following 

figures and tables. 

Table 1: Gender wise responses ratio 

Gender Responses 

Male 324 

Female 276 

Table 1 shows the Number of Male and Female respondents in our survey. 

 

Figure 2: Gender Ratio Graph 

Figure: 2 shows the percentage statistic of male and female survey respondents. 54% were male respondents and 

46%were female respondents. 
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Table 2: Age wise responses ratio 

Age 

Group 

Respondents 

21-30 450 

31-40 114 

41-50 36 

Table: 2 shows the age-wise statistics of our respondents. It indicates that the 21-30 age group people were our 

major contributors. 

 

Figure 3: Age Ratio Graph 

Figure 3 shows the percent of respondents WRT age groups. 

Table 3: Role of wise responses ratio 

Roles Respondents 

Android Developer 54 

Applications Developer 12 

Graphic Designer 66 

Internee 114 

IT officer or employee 12 

Junior Software Engineer 174 

Senior Software Engineer 84 

Student 84 

Table 3 shows the designations of our respondents. Our major contributors were junior software engineers (174) 

and Internees (114). The other contributors were Android and application developers, graphic designers, IT 

employees, senior software engineers from Hyderabad and Karachi (Pakistan). The Student respondents were 

from Mehran UET and the University Of Sindh, Jamshoro. 
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Figure 4: Roles ratio Graph 

Figure 4 shows the percent ratio of all the respondents concerning their designation or roles. 

Table 4: Experience wise responses ratio 

Experience Respondents 

1 year 78 

2-5 years 264 

6-8years 36 

9-10years 24 

<1year 198 

The table4 shows experience wise distribution of our respondents. Most of the respondents had 2 to 5 years of 

work experience. The second-highest share was less than one year which included internees and students. The 

least part was senior people which is 24 respondents only. 

 

Figure 5: Experience ratio Graph 

Figure 5 shows the percent distribution of our respondents in year wise experience categories. 
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Table 5: Location wise responses ratio 

Location Respondents 

Hyderabad 204 

Karachi 366 

Jamshoro 198 

The table 5 shows the locations of our number of respondents. The main contribution was from Karachi as it has 

many software industries. The second-highest number of respondents were from Hyderabad software employees 

and internees. The least contribution was from students and the internees of Jamshoro. 

 

Figure 6: Location Ratio Graph 

Figure 6 shows the location-wise share of respondents in percentage. 

4.1. Question wise responses and validations 

We asked our respondents which patterns they have ever used (or are suitable) in Mobile app (Q1), web app(Q2) 

and hybrid app (Q3) designing. Also, we asked questions about which quality factors were supported by what 

kind of design patterns (Q4 to Q8).To validate the survey answers we used the T-test method in the SPSS tool. 

For the T-test, we took confidence interval values like 95% and builder pattern values for comparison to other 

pattern values. As a rule, all the significant values of output which were less than 0.95 were counted as valid and 

the values greater than this were counted as invalid. Also, we have observed that the zero significant values 

were not exactly zero in real but were too small numbers so those were shown as zero.  

The responses and validations are shown in the following figures. 
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Figure 7: Mobile app suitability responses for Patterns 

Table 6: Validation values For Mobile app responses 

Pattern Signif

icance 

value 

Pattern Signif

icanc

e 

Value 

1.Abstract 

factory 

.837 12.Strategy .794 

2.Bridge .837 13.Template .808 

3.Composite .770 14.Visitor .694 

4.Chain of 

Responsibility 

.770 15.Prototype .808 

5.Command .000 16.Singleton .837 

6.Interpretor .837 17.Factory .770 

7.Iterator .677 18.Adapter .749 

8.Mediator .770 19.Facade .794 

9.Memento .000 20.Flyweight .794 

10.Observer .702 21.Proxy .770 

11.State .837 22.Decorator .770 

The figure 7. Shows the patterns which are or are not suitable to be used for mobile apps. The Table 6 shows the 

significant values of validation of patterns. Since all values are lesser than 0.95, all responses are valid for this 

question. 
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Figure 8: Web app suitability responses for Patterns 

Table 7: Validation values For Web app responses 

Pattern Signif

icance 

value 

Pattern Significa

nce 

Value 

1.Abstract 

factory 

.000 12.Strategy .000 

2.Bridge .000 13.Template .000 

3.Composite .684 14.Visitor .000 

4.Chain of 

Responsibility 

.000 15.Prototype Invalid 

5.Command .000 16.Singleton .000 

6.Interpretor .000 17.Factory .000 

7.Iterator .000 18.Adapter .000 

8.Mediator .000 19.Facade .000 

9.Memento .000 20.Flyweight Invalid 

10.Observer .000 21.Proxy .000 

11.State .741 22.Decorator .000 

The figure 8 shows the patterns which are or are not suitable to be used for web apps. Table7 shows the 

significant values of validation of patterns. Responses for Prototype and flyweight patterns are invalid here. All 

other values are lesser than 0.95 so all those are valid. 
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Figure 9: Hybrid app suitability responses for Patterns 

Table 8: Validation values For Hybrid app responses 

Pattern Signifi

cance 

value 

Pattern Significa

nce 

Value 

1.Abstract 

factory 

.000 12.Strategy .770 

2.Bridge .720 13.Template .000 

3.Composite .720 14.Visitor .000 

4.Chain of 

Responsibility 

.677 15.Prototype .001 

5.Command .640 16.Singleton .000 

6.Interpretor .720 17.Factory .002 

7.Iterator .677 18.Adapter .000 

8.Mediator .000 19.Facade .216 

9.Memento .000 20.Flyweight .000 

10.Observer .640 21.Proxy .000 

11.State .677 22.Decorator .720 

The figure 9 shows the patterns which are or are not suitable to be used for Hybrid apps. The Table 8 shows the 

significant values of validation of patterns for hybrid apps. Since all values are lesser than 0.95, all responses are 

valid for this question3. 
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Figure 10: High-Security suitability responses for Patterns 

Table 9: Validation values For High-Security responses 

Pattern Signifi

cance 

value 

Pattern Significa

nce 

Value 

1.Abstract 

factory 

Invalid 12.Strategy .003 

2.Bridge .000 13.Template .000 

3.Composite .000 14.Visitor .000 

4.Chain of 

Responsibility 

.000 15.Prototype .000 

5.Command .000 16.Singleton .000 

6.Interpretor Invalid 17.Factory .000 

7.Iterator .000 18.Adapter .720 

8.Mediator .001 19.Facade .700 

9.Memento .007 20.Flyweight .000 

10.Observer Invalid 21.Proxy .000 

11.State .004 22.Decorator .000 

The figure 10 shows the patterns which High-security feature for applications. Table 9 shows the significant 
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values of validation of patterns. Interpreter and observer are invalid here and since all other values are lesser 

than 0.95, all other responses are valid for question4. 

 

Figure 11: Portability suitability responses for Patterns 

Table 10: Validation values For Portability suitability responses 

Pattern Signifi

cance 

value 

Pattern Significa

nce 

Value 

1.Abstract 

factory 

.009 12.Strategy .000 

2.Bridge .707 13.Template .204 

3.Composite .000 14.Visitor .466 

4.Chain of 

Responsibility 

.000 15.Prototype .005 

5.Command .001 16.Singleton .000 

6.Interpretor .809 17.Factory .000 

7.Iterator .760 18.Adapter .000 

8.Mediator .707 19.Facade Invalid 

9.Memento .000 20.Flyweight .000 

10.Observer .800 21.Proxy .800 

11.State Invalid 22.Decorator .000 
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The figure 11 Shows the patterns which support the portability feature. The table 10 shows the significant values 

of validation of patterns for portability. Since all values are lesser than 0.95, all responses are valid for 

question5. 

 

Figure 12: High-Reliability suitability responses for Patterns 

Table 11: Validation values For High Reliability responses 

Pattern Signifi

cance 

value 

Pattern Significa

nce 

Value 

1.Abstract 

factory 

.000 12.Strategy .000 

2.Bridge .876 13.Template .000 

3.Composite .700 14.Visitor .000 

4.Chain of 

Responsibility 

.000 15.Prototype .000 

5.Command .000 16.Singleton .000 

6.Interpretor .000 17.Factory .707 

7.Iterator .000 18.Adapter .000 

8.Mediator .000 19.Facade .877 

9.Memento .009 20.Flyweight .000 

10.Observer .001 21.Proxy .000 

11.State .000 22.Decorator .000 

The figure 12 shows the patterns which provide a high-reliability feature. The table 11 shows the significant 
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values of validation of patterns that provide high reliability. Since all values are lesser than 0.95, all responses 

are valid for question7. 

From the survey, we asked about patterns that support high maintainability (Q6) and high efficiency (Q8). The 

answers were 100% for both so we haven’t validated since it is obvious that all answers are valid (100%). 

4.2. Recommender System 

The recommender system was created on MS azure which recommends some best suitable patterns to users 

concerning application types and quality attributes. It uses all the above survey responses dataset and Splits (into 

80, 20). Total three datasets were created. First contained names of patterns (patternID), factors (factorID) and 

their ratings (survey responses) into binary form. The second dataset had the information about pattern category 

(structural, behavioral and creational). The third dataset had factorID names (i-e Security, Portability, 

Maintainability, reliability, efficiency) and detail. The data was trained and experimented using the Train 

Matchbox Recommender algorithm as shown in figure 13. 

 

Figure 13: Experiment diagram of Design Patterns recommender 

 

Figure 14: Recommender output for Mobile app suitability Patterns 

The figure 14 shows patterns recommended from the experiment for mobile applications. These are the most 

suitable patterns to be considered for mobile app designing. 
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Figure 15: Recommender output for Hybrid app suitability Patterns 

 

Figure 16: Recommender output for Web app suitability Patterns 

 

Figure 17: Recommender output for Quality attributes’ suitability Patterns 

The figure 15 shows the eight patterns highly recommended for hybrid application designing. The figure 16 

shows the eight patterns highly recommended for mobile application designing. The figure 17 shows the 

patterns recommended if a user prefers high maintainability, high reliability or high efficiency for their system. 

Or if a user prefers to keep a portability feature then corresponding patterns are more suitable. Whereas the 

survey responses for security preferred patterns were lesser therefore it wasn’t recommended by our ML 

recommender system. 

5. Recommendation of Patterns 

Table 12 and Table 13 Show the lists of recommended patterns for particular application types and quality 

attributes respectively. 
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Table 12: App Types and Recommended patterns 

Application 

Type 

 

Recommended Patterns 

Web App Builder, Visitor, Factory Method, 

Strategy, Adapter, Template, 

Interpreter, Observer 

Mobile 

App 

Façade, Composite, Strategy, 

Singleton, Adapter, Chain of 

Responsibility, Interpreter, 

Decorator 

Hybrid 

App 

Factory Method, State, Command, 

Decorator, Façade, Strategy, 

Singleton, Interpreter 

 

Table 13: Attributes and Recommended Patterns 

Quality 

Attribute 

 

Recommended Patterns 

Maintainability, 

Efficiency, 

Portability 

Chain Of Responsibility, 

Strategy, Factory Method, 

Builder, Visitor, Singleton, 

composite, Interpreter 

Reliability Strategy, Chain Of 

responsibility, Interpreter, 

composite, Command, 

Decorator, Façade, State 

 

6. Conclusion 

The crowdsourced tactic specified in this paper was directed to discover optimum practices of patterns in 

software Domain and their effect on quality. The assumptions were validated or invalidated based on responses 

collected from the crowd of software engineers and ML experiments. This research determines that 8 out of 23 

patterns are highly recommended in industries for each (Web, Mobile or Hybrid) type of applications. It is 

established from the survey that maintainability is the most affected quality attribute among all the attributes as 

its answers were 100 percent from the survey. Additionally, the preference of Patterns for preferred quality 

attributes (like Maintainability, reliability, portability, and efficiency) was also identified from the ML 

recommender system. This finding of exact patterns guides the designers to concentrate on these patterns more 

than others while focusing on software product’s desired nature and preferred quality to be gained. 
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