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Abstract 

In this study we address enhancing the ability of social agents embedded in multi-agent based simulations to 

achieve their goals by using objects in their environment as artifacts. Reformulated as a discrete optimization 

problem solved with evolutionary computation methods, social agents are empowered to learn and adapt 

through observations of their own behavior, others in the environment and their community at large. An 

implemented case study is provided incorporating the model into the multi-agent simulation of the Village 

EcoDynamics Project developed to study the early Pueblo Indian settlers from A.D. 600 to 1300. Eliminating 

the existing presumption that agents automatically know the productivity of the landscape as part of their 

settling and farming practices, agents use the landscape as an artifact, learning to predict its productivity from a 

few attributes such as the area's slope and aspect. Given the dynamic nature of the landscape and its inhabitants, 

agents also evolve various combinations of learning strategies adapting to meet their needs. The result is the 

demonstration of a mechanism for incorporating artifact use learning and evolution in social simulations, 

leading to the emergence of favorable learning strategies.  

Keywords: multi-agent systems; social simulations; intelligent agents; learning and adaptation. 

1. Introduction 

Cognitive scientists recognize that tools or artifacts have been vital in the evolution of societies. Archeologists 

explore early recordings of tool use [1], psychologists study children faced with tool use complexity [2,3,4], 

behavioral geneticists theorize on the role of genetics in tool use behavior [5], while philosophers argue that tool 

or artifact use rivals language in depicting the high level cognition attributed to humans [6].  
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The relation of artifact use to intelligence has generated an interest in the Artificial Intelligence (AI) community 

[7] ranging from theories for artifacts and reasoning about their use [8,9],mechanisms for artifact representation 

and recognition [10,11,12] to models for learning artifact selection and use [13,14,15,16,17,18]. In the realm of 

autonomous agents and multi-agent systems(MAS) the artifact concept has been introduced as an abstraction to 

represent the reactive system entities exposed to agents [8,19]. While agents characterize the proactive MAS 

components responsible for acting upon the environment, artifacts depict the functional components that can be 

used by agents towards realizing their goals. Essentially agents that can reason adequately about the selection 

and use of available artifacts can enhance their capabilities in MAS. Omicini and his colleagues artifact theory 

[8] has been incorporated into the cognition of rational agents formalizing the notion of artifact capabilities [9] 

used to describe plans that intentional agents can carry out through the use of artifacts. According to the theory 

the relationship between agents and artifacts can be depicted in three aspects: selection, use and construction. In 

order to use artifacts towards an objective an agent may need to reason about which artifact to select and once 

selected how to go about effectively using it for the objective. Artifact construction is often the result of a failure 

in one of the other two. In this study we focus on artifact use. One of the primary application areas identified to 

benefit from the artifact abstraction in MAS is multi-agent based simulation(MABS) [19]. MABS has 

distinguished itself in recent years as one of the most prominent areas of agent-oriented computing providing a 

technology for simulating complex social systems. In addition to their inherent characteristic of simulating the 

collective interactions and actions among autonomous and heterogeneous agents, the technology facilitates the 

natural description of a complex system where agents with the ability to learn and evolve in the presence of 

others can enter and leave at will [20,21,22]. Assisting in the formulation and validation of theories in the broad 

field of social science, MABS applications have transitioned from the modeling of simpler societies such as ant 

colonies [23] to complex human societies such as in the Village EcoDynamics Project (VEP) [24,25,26]. 

According to Omicini and his colleagues artifacts can be used to describe the function-oriented components of a 

MABS exploitable by its social agents towards enhancing their capabilities. As such artifacts may encapsulate 

real world artifacts or any object in the agent’s environment that it can utilize. In order to properly reason about 

using an artifact an agent must have some representation of its structure and possibilities with regard to its 

behavior. To facilitate this process Omicini and his colleagues introduce the concept of a cognitional artifact in 

their Artifacts and Agents (A&A) model [19] which they describe as an artifact that exposes three main 

properties to agents: a usage interface, function descriptions and operating instructions. Function descriptions 

constitute the services provided by the artifact. Operating instructions for a particular function description are 

analogous to a manual describing sequences of operations obtained from the usage interface. An agent in 

possession of a cognitional artifact uses the function description set for artifact selection and a corresponding 

operating instruction for artifact use. Although cognitional artifacts permit cognitive use of artifacts thus 

supporting an open MAS, Omicini and his colleagues clearly state that artifacts can still be designed to expose 

only a subset of the properties to agents. In such cases agents would need to learn and possibly adapt and evolve 

knowledge for the remaining properties. For MABS systems, the manner in which artifact exploitation evolves 

can provide even better insight into emerged phenomena and the overall performance its social agents. In order 

to effectively exploit partially cognitional artifacts in their environments, agents embedded in MABS need a 

model for artifact use that facilitates learning, adaptation and evolution. Such a model is introduced by [15]. In 

the study a multi-agent simulation was built composed of agents and artifacts. Artifacts exposed only a usage 
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interface, defined primitively in terms of functional attributes each with a domain of integer values. The 

objective of the agents was to learn a correct sequence of actions where each action was a combination of 

functional attribute values. The cognition of agents in the model was extended from the generic AI model for 

learning agents[27] to include artifact capabilities. As such the performance element described as the cognitive 

component used by agents to deliberate on action selection was used to define an individual and a observational 

learning strategy implemented with genetic algorithms. The authors expanded on their work to include learning 

and evolving culturally through the use of a cultural algorithm [28]. The studies concluded that while individual 

learning outperformed random learning, both observational and cultural learning were superior. These studies 

however fell short by ignoring several relevant MABS components such as the social network connectivity 

between agents, the dynamic nature of agents, the artifacts and the environment. Nevertheless, they provided an 

introduction to incorporating artifact use learning and evolution in MABS in a generic way. Based on the 

artifact capability model [15,29,30], formal definitions of artifacts as exploitable objects in the MABS 

environment are offered along with agent knowledge structures for reasoning about their use. Agents in our 

model are built to learn individually, socially through social networks and culturally through a prominent 

framework for cultural evolution. Agents can use any predefined learning strategy or evolve any combination of 

these learning strategies over time. To demonstrate the incorporation of our model in MABS the existing 

multiagent simulation of the Village Ecodynamics Project developed to study the early Pueblo Indian settlers 

from A.D. 600 to 1300 is utilized as a case study. Agents characterized as households represent and exploit their 

occupied landscape as an artifact in terms of five functional attribute values with predefined domains. Given the 

objective of farming for survival, agents employ artifact use learning strategies to predict the productivity of 

different areas of the landscape directing their decision of where to settle and where to farm. The dynamic 

nature of the landscape, the mobility of its inhabitants and agents entering and leaving the environment through 

marriages (new households) and deaths respectively provides a good test bed for the artifact use model.  The 

next section describes the model including artifact and agent representations and the exploitation of artifacts 

through various learning strategies. It is followed by the case study implementation in the Village simulation. 

Next, details on conducted experiments are provided, results are discussed, conclusions deduced and some areas 

for future work are offered.  

2. Model for learning and adapting artifact capabilities 

To provide a mechanism for incorporating artifact use learning and evolution in MABS, an artifact and agent 

representation supporting different learning strategies is essential. Artifacts should be defined to expose enough 

information permitting use to agents that encounter them. Agents should maintain knowledge structures used to 

reason about artifact use and a mechanism for augmenting their knowledge either on their own or by taking 

advantage of other agents in their environment. As such of the five cognitive levels identified by Omicini and 

his colleagues [8] artifact theory ranging from unaware use of artifacts by agents to construction and design of 

artifacts, this study falls within level three. At this level agents cognitively use artifacts, that is, agents are 

designed to know which artifact to use but can learn and evolve the knowledge of how to use them over time. 

2.1. Artifact Representation 
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Using the artifact abstraction in the A&A model, artifacts are defined to expose two of the three properties 

namely function description and usage interface and agents are expected to learn operating instructions. The 

function description which permits artifact selection is defined to match the agent’s objective or an element of 

the agent’s goal set. To facilitate the use of evolutionary computation methods for the learning and evolution 

process, the usage interface or operations permissible on the artifacts is defined in terms of functional attributes. 

Hence an artifact is deemed any object that can be described in terms of one or more parts, which have 

functional attributes with predefined domains[15]. 

An artifact t  is defined as: 

t ≜ <UIt , FDt>  (1) 

UIt defines the usage interface as: UIt = Pt  where Pt  constitutes the parts of the artifact with each part pt ∈ Pt 

defined as:  

pt ≜ H pt  (2) 

An artifact part is specified in terms of a functional attribute set Hpt defined as: 

Hpt ≜ { <[mn,mx], ac>} | mn,mx ∈ℝ ∧ 0 ≤ mn ≤ mx ∧ ac ∈ ℕ} (3) 

where mn, mx specify the lower and upper inclusive boundaries of the domain of its possible values. An 

additional element of the tuple ac is useful primarily when mn, mx are not whole numbers. It is used to specify 

the required level of accuracy for the domain elements. In order to learn correct values of an attribute the 

accuracy is used to convert non-natural real numbers into whole numbers. For example, if the domain of an 

attribute is defined as [2.115; 6.115] and the accuracy as ac = 2 then the domain is converted to [211; 611] 

facilitating the discrete optimization process used by the agents in the evolutionary algorithms. FDt specifies the 

function description set. A function description fdt ∈FDt is defined as: fdt ≜ <gid , d, x, f> where gid is an 

identifier for the provided service that can be used to match agents goals and d = [0, 1] specifies if the artifact is 

dynamic with respect to the function description. The number of actions required to successfully exploit the 

artifact for the objective of gid is denoted as x and f  is a fitness function used to evaluate any one of x actions. 

The fitness function is defined as:  

f  : <j, V> → k  (4) 

where 0 < j ≤ x identifies the index of the action being evaluated and V = {v1, …,vn} specifies chosen values for 

each of the total n functional attributes of the artifact in a maintained sequence. Each value vi is expected to fall 

within Di that is within mni and mxi inclusively. Finally, k ∈ ℝ gives a value to the fitness. The dynamic 

property indicates that the fitness result k may differ during the evolutionary process for the same action index 

and value set. This is the situation encountered with the exploitation of the landscape in the Village simulation. 

2.2. Agent Representation 
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Mokom and Kobti’s [15] agent representation characterizes an agent cognition with a performance element (PE) 

, a critic element (CE) and a learning element. (LE). PE deliberates and chooses the agent’s action to perform. 

Once performed CE evaluates the results obtained against an external performance standard providing feedback 

to LE which provides any necessary updates to PE. Our agent representation is an extension with an agent ag 

defined as: 

ag ≜ <PEag , ceag , leag> (5) 

PEag = <Gag , Cag , Aag > describes the performance element. Gag denotes the agent’s set of goals and Cag denotes 

the agent’s set of artifact capabilities. Each goal gag ∈ Gag = <gid, st> where gid is the goal identifier and st = [0, 

1] indicates whether the goal is inactive or active. An artifact capability cag ∈ Cag is a tuple cag = <t, CPag> 

where t denotes an artifact and CPag a set of plans with cpag ∈ CPag defined as: 

cpag ≜ <fdt , UAcp
ag

 > (6) 

The capability plan cpag consisting of a function description of artifact t and a sequence of use actions is 

analogous to operating instructions exposed by an artifact in the A&A model. In our model this is maintained 

within the agent as artifact use knowledge learned and evolved. A use action uacp
ag

 ∈ UAcp
ag

 is defined as: 

uacp
ag

  ≜ <V, r, y, ai > (7) 

where V denotes the functional attribute values pertaining to the action. Agents learning socially may use a 

predefined social network, build one with a predefined radius or employ a strategy to learn the radius as they 

evolve. The tuple element r ∈ ℕ is used to represent the value of the radius for the action which is only valid 

when a social learning strategy is employed. The fitness value obtained upon evaluation of the action is denoted 

by the element mx ∈ ℝ and ai specifies which action generation function or learning strategy the agent used to 

generate the action. Finally, Aag denotes all the action generation functions available to the agent implementing 

the learning strategies the agent is able to employ. Essentially, an action generation function aj ∈ Aag is defined 

as aj : Gag → ua since the function is used by the agent to generate a use action to perform towards learning a 

capability that achieves a goal in the agent’s goal set. It should be noted that a selected goal will be matched to 

an artifact via a function description whose usage interface can be exploited as a result. The critic and learning 

elements of the learning agent are denoted by ceag and leag respectively. ce which provides feedback from an 

agent’s performed action simply obtains the fitness function result and conveys it to leag. The final component of 

the agent model leag performs any necessary updates on PEag such as indicating that the goal is achieved or the 

current action is successful. The performance standard (external to the agent)which learning agents use to 

evaluate their actions has been incorporated in the artifacts in the form of a fitness function. 

2.3. Strategies for learning and adapting artifact capabilities 

Given the artifact and agent representations above agents can learn and adapt artifact use by generating actions 

upon the artifacts towards an active goal. In doing so, they are able to build and ameliorate their capability set 



International Journal of Computer (IJC) (2020) Volume 38, No  1, pp 192-208 

 

197 

for the artifact over time. Agents accomplish this by reformulating the problem as a discrete optimization 

problem solved with evolutionary computation methods including genetic and cultural algorithms. The 

functional attribute values and any other values being evolved serve as the discrete variables. The most relevant 

aspect of the process involves the learning strategies employed by the agents to generate use actions. The model 

supports three distinct categories of learning strategies within which there are some variations. 

2.3.1. Individual learning strategy 

The individual learning strategy facilitates agents in MABS learning artifact use through observations of their 

own behavior. Individual learning is implemented using genetic algorithms (GA) however contrary to the 

individual learning model in [15] a real-valued representation is used instead of binary for the pool solutions. A 

solution is a chromosome representing functional attribute values of a use action. To regenerate the pool of 

solutions after evaluating all its elements, roulette wheel selection is used to select two candidates for 

reproduction. Two-point crossover is applied at a rate of 0.7 exchanging a single randomly chosen attribute’s 

value. Along with the suggested mutation rate of 1/n for n functional attribute values, real-valued mutation step-

sizes are determined using the formula offered by the Breeder Genetic Algorithm [31] with standard values (0.1, 

16) for mutation range and mutation precision respectively. The formula generates small step sizes with a higher 

probability and large step sizes with a lower probability. To address function descriptions characterized by a 

dynamic property that indicates different results for the same action at different times of the evolutionary 

process, the fitness score obtained after evaluating a performed action is used to update all pool solutions 

equivalent to the performed action. As such identical pool elements that have been evaluated always have the 

same score, that is, the most recent one. 

2.3.2. Social learning strategies 

One of the benefits for agents embedded in MABS is that they can enhance their learning and evolution with 

positive influences from other agents in their environment. These influences can be transmitted through an 

agent’s existing social network or one constructed for the sole purpose of artifact use learning. Social networks 

can remain fixed throughout the model or dynamic in nature where agents continuously update them with new 

members. Social learning is implemented with a GA similar to the individual learning strategy with a few 

distinctions. First the chromosome is extended with one more values, representing the radius of the social 

network utilized by the agent. This value can remain fixed for all agents or given a predefined domain that 

agents use to evolve its values in the same fashion as the artifact’s functional attribute values. Social learning 

only requires a single-solution pool evolved with the influence of others. The agent searches its network for a 

better performer whose current action is used to influence the solution. The influence formula to influence 

solution W = {w1 , … , wn+1} with a better performer’s solution Z = {z1 , … , zn+1} is derived from Chung and 

Reynolds [32] characterization of influence from an exemplar:  

      {

   |(      )      (   )|                  
   |(      )      (   )|                  
   (      )      (   )                    

                                (8) 
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where n represents the number of functional attribute values with one value added to represent the radius and N 

(0, 1) is a random value obtained using the standard normal distribution.  Although agents begin with randomly 

generated solutions at the start of the simulation, agents that enter the simulation world during the evolutionary 

process need not commence learning from scratch. In the model, these agents use the latest evaluated use action 

of their nearest neighbor to begin the learning process. 

2.3.3. Cultural learning strategies 

In order to simulate cultural evolution the simulated social population in a MABS can be extended to include a 

cultural evolutionary framework such as a cultural algorithm (CA). The product is a powerful tool for examining 

and capturing the effects of social interactions and cultural learning on the overall performance of a complex 

social system [33,14]. Introduced by [34] CAs provide a framework for extracting, storing and exploiting 

experiences in a population of individuals over time permitting self-adaptation in an evolving model [33]. A 

population space and a belief space are the two major components in a CA connected via a communication 

protocol. Selected individuals from the evolving population space which may constitute a social population 

contribute their experiences to the belief space through an acceptance function. The belief space maintains these 

experiences as categories of knowledge sources. The types of knowledge sources supported by the CA’s belief 

space are broadly defined to include situational, normative, topographic, historical or temporal, and domain 

knowledge [35]. The knowledge sources are used selectively or conjunctively to influence the evolution of the 

individuals in the population space by means of an influence function. The interaction and support that occurs 

between the population component and the belief space is considered analogous to the evolution of human 

culture [36]. In this study a CA is utilized to implement the cultural learning strategies. Two types of knowledge 

sources are maintained in the belief space with the same structure as in Mokom and Kobti [28].Situational 

knowledge maintains m best examples extracted from the population where each exemplar is stored as a use 

action. In the model m can be a fixed value or a percentage of the current population size. Normative knowledge 

maintains favorable ranges for evolving values specifying the lower and upper boundaries for each functional 

attribute extracted from the best examples. To facilitate agents that wish to combine cultural learning with social 

learning the belief space supports maintaining best examples and favorable ranges for social network radius 

when it is being learned. The belief space is updated at predefined intervals during the evolutionary process. 

When learning non-dynamic function descriptions, the belief space update uses the same formula in [28] where 

the current best examples only replace belief space examples with a lower score. For a dynamic function 

description where the artifact produces different fitness for the same action during evolution the belief space 

update replaces all examples in the belief space with the current extracted exemplars using them to extract the 

favorable ranges for the normative knowledge. The population space characterized by the social agents uses a 

GA similar to the social learning strategy with influence on solutions coming from the belief space rather than 

better performers of the agent’s social network. The situational and normative knowledge sources are used to 

provide three types of influences: situational, normative and a combination of the two. This extends the CA in 

[28] which only supports the combined influence. Given solutions W and Z  from Section 2.3.2 with Z 

representing a randomly chosen exemplar situational knowledge influence uses Eq. 8. Normative knowledge 

influence uses the following formula also derived from Chung and Reynolds [32]: 
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       (      )      (   ) (9) 

where ui and li denote the upper and lower bounds for the attribute in the normative knowledge respectively. The 

combined influence uses the same formula from Mokom and Kobti [28] which is Eq. 8 with the intervals zi - wi 

replaced by ui - li. Agents are influenced by situational knowledge, normative knowledge or a combination of 

the two. 

2.3.4. Combining strategies 

Agents can decide upon any combination of learning strategies to employ. For instance, an agent that wishes to 

learn on its own as well as socially or culturally would maintain a pool of solutions rather than a single one, 

using crossover as specified in individual learning and mutation on each solution with influence from better 

performers in its network or the cultural belief space respectively. An agent can also combine the social and 

cultural strategies choosing any of the three belief space influence types and randomly alternating its influence 

between better performers in its network and knowledge from the belief space. Agents influenced by others 

through their social network are always influenced by the most recent evaluated use action of the influencing 

agent. 

2.3.5. Evolving strategies 

While agents can learn with any designated learning strategy our model supports agents that wish to evolve 

learning strategies as part of the learning process. Ata minimum agents that learn which strategy to employ 

should outperform those that employ learning strategies at random. An individual meta-learning strategy is 

supported for evolving the strategies the agent is able to employ. A GA is used with a binary representation for 

the solutions. A binary string of four bits is used to represent a strategy: [b1, b2, b3, b4] . The first two bits b1 and 

b2 represent individual learning and the combined social and social network radius learning respectively. The 

strategy is applied when the bit is set to ’1’ and ignored when set to ’0’. The last two bits [b3 , b4] are used to 

characterize the four possible values for the cultural learning strategies: no cultural learning, situational 

influence, normative influence and combined situational with normative influence. Disregarding the random 

strategy [0000] agents learn to evolve a total of 15 learning strategies. The population size is set to 8. Roulette 

wheel selection is used for selecting solutions for reproduction. Crossover occurs at a rate of 0.7 with two-point 

crossover applied to alter a single type of influence, that is, b1 , [b2] or [b3 , b4] and a mutation rate of 0.1 is used. 

Agents that evolve strategies are equipped with the GA for evolving strategies and a separate evolutionary 

algorithm (GA or CA) for each possible strategy. When evolving strategies, the agent first generates a strategy 

action which identifies the strategy it wishes to use. The selected strategy is then matched to its evolutionary 

algorithm which is then used to generate the use action. Since use actions maintain information about the 

strategy used for their generation, strategies can be evolved alongside the agent’s attribute value selections.  

3. Case study: Artifacts in the village multi-agent simulation 

In this section a case study implementation of the artifact use model for MABS is presented. Involving 

researchers from several disciplines including anthropology, geology, economics and computer science the 
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Village Ecodynamics Project was developed to study the early Pueblo Indian settlers from A.D. 600to 1300. A 

major component of the project, the Village multi agent based simulation, developed using the Repast 

Simulation Toolkit, models the families within households represented as agents as they farm for maize, hunt 

for protein, gather water and wood and employ various exchange models for trade [37,24,25]. In the simulation, 

agents give birth, get married and form new households and die from natural causes or failure in meeting their 

needs for survival. Soil productivity, rainfall, forest density and animal density are among many other aspects 

included in the model . Each household carries the responsibility of maintaining plans adaptable to changes in 

the environment in order to survive. The project strives to understand what led to the depopulation that occurred 

at the end of period, demography, settlement distributions and violence. The focus in this study is on the farming 

task conducted by the agents. In the existing model the landscape is divided into cells and agents are presumed 

to automatically know the soil productivity of every cell at any time that they occupy it. As such agents choose 

the more productive areas to settle and farm upon. This is highly unrealistic as it assumes that agents can 

adequately predict soil productivity prior to usage over time. A time step in the simulation is a year 

characterized by four seasons: spring, summer, fall and winter. Agents consume maize throughout the year but 

are programmed to plant in the spring and harvest in the fall. Agents self-evaluate and will plant additional plots 

or move when necessary. Many factors are utilized to measure soil productivity which changes over time and 

declines depending on how long and how often it has been cultivated. Representing the landscape as an artifact 

(LANDSCAPE), five features that agents are likely to know upon encountering a cell are selected: the average 

elevation (dem), the average slope(slope), the average direction of slope (aspect), the average depth to bedrock 

(depth) and the average proportion of its biomass consisting of any subspecies of big sagebrush prior to any 

agricultural clearing (artr). With supplied predefined domains for each feature, LANDSCAPE is defined as a 

single part artifact with the five features represented as its functional attributes. The domain of all attributes are 

converted to integers. The accuracy is set to 0 for all attributes except artr, for example depth is rounded from 

[25.2,182.7] to [25,183]. Since artr has a domain of [0.008421053,0.5198181], its accuracy is set to 3 resulting 

in a conversion to [0,500]. LANDSCAPE has one function description with farming as the provided service 

requiring one action for exploitation. Since landscape productivity changes overtime resulting in the same 

functional attribute value combinations producing different results over the years the dynamic attribute is set to 

1. Given by the current simulation the fitness of a use action is essentially the agent’s harvest. Since agents 

always plant in their settled cell, agents generate use actions whenever they need to plant in additional cells or 

move within the predefined move radius. Basically, the agent tries to predict the productivity of included cells. 

New use actions are only generated when the current one has not received a fitness.  Since a combination of 

functional attribute values in a generated use action will not necessarily be identical to those in a particular cell, 

an interpretation layer is needed to convert the use action to the closest matching cell. To do this artr values are 

converted to their integer equivalent and a simple distance measure is used averaging over all attribute values to 

select the cell that is closest to the generated values. For a given cell with functional attribute values CV = {cv1 , 

… , cv5} and a generated use action with functional attribute values V = { v1 , … , v5} the following function is 

applied: 

   (      )   {
                        
 

|      | 
                                     (10) 
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If multiple cells have the same distance measure one is randomly selected. Agents in the simulation are 

extended to support learning to exploit the LANDSCAPE artifact using any of the strategies. They can also 

evolve strategies. Learning algorithms are applied when the agent decides to move or plant additional plots. 

First, the agent selects a number of cells for consideration as in the current simulation. Then the agent’s PE 

element determines which strategy to use if evolving strategies. The chosen strategy is then employed to 

generate a use action. The use action is matched to the closest cell which the agent presumes to be the most 

productive using Eq. 10. The harvest obtained from the plots farmed is provided as feedback to the agent’s CE 

element which updates the evolutionary algorithms in PE: Over time the agent learns, evolves and adapts as 

necessary to changes in settlement distribution, landscape productivity, demographics of households and the 

population at large, its social networks and emergent cultural beliefs. Along the way the agent maintains its 

primary objective which is to produce enough to feed its family for survival as agents that do not produce 

enough maize will ultimately die.  One important aspect to note about the learning strategy that involves 

learning the social network radius is that while agents in homogeneous parts of the landscape should benefit 

from larger social networks, maintaining such networks in areas with high variability may prove detrimental to 

the agents.  

4. Experiments and results 

4.1. Environment setup 

The village simulated in conducted experiments is VEP IIN which models a larger region than the original VEP 

I. Spatially ,agents occupy a landscape represented as 114,240 cells (VEPI occupied 45,400 cells [25]). Agents 

are stripped of all tasks except farming and not allowed to any form of trade in order to adequately measure the 

artifact use effects on the evolution of the population. Agents use only the productivity (or predicted 

productivity) as criteria for where to relocate and farm. All experiments begin with 600 randomly generated 

agents randomly placed on the landscape. Each agent is given access to the LANDSCAPE artifact which 

exposes itself as an object usable for the service of farming. The following domain ranges are given for the 

functional attributes of each cell: artr [0,500], aspect[0,359], dem [1438,3009], depth and slope [0,49]. Upon 

arrival on the landscape, agents immediately attempt to move to a predicted productive cell. Obviously at the 

start of the simulation this is simply a guess as agents have no idea about the fitness of their actions. Over time 

however it is expected that agents will improve their predictions of cell productivity and therefore enhance their 

chances for survival. The existing move radius of40 is maintained and a domain of [1,40] is defined for the 

social network radius. Since feedback is only obtained once a year after a harvest, population size of the 

solutions pool for all strategies involving individual learning is set to 10. The contention is that a small 

population size is relevant to minimize agents dying before learning begins. The population size for the GA used 

for evolving strategies is set to 8. The belief space maintains the current top 2% of the population and is updated 

every 5 years. It should be noted that although the number of examples in the belief space begins at 12 with 600 

agents in the population, this value changes over time along with the population size. For all experiments the 

simulation begins in year A.D. 600 and runs through 1280. Results are aggregated over the four study periods 

obtained from the Pecos classification [38] used by the Village Ecodynamics Project researchers. They are 
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Basketmaker III (A.D. 600-900), Pueblo I (A.D. 750-900), Pueblo II (A.D. 900-1150) and Pueblo III (A.D. 

1150-1280). The objective is to initiate the avenue for validating results against archeological findings. 

4.2. Test cases 

In the village simulation agents maintain a maizestorage attribute which tracks the maize they have in store at 

any given time. This attribute is augmented with the agents’ harvest and reduced by maize consumed by family 

members of the agent’s household. Factors that affect the amount of maize consumed by an agent include 

calories spent on farming, monitoring plots and traveling to farm on plots away from its settled cell. Agents die 

when maizestorage drops below zero. In all conducted experiments, we are interested in the survival rate of the 

population during all the classified phases. To facilitate identifying the no learning and the various learning 

strategies employed they are henceforth referred to as follows: No learning (Random), Individual learning 

(Indv), Social learning with randomly generated radius (SocRRad), social learning with learned radius 

(SocLRad), cultural learning with situational knowledge (CulS), cultural learning with normative knowledge 

(CulN) and cultural learning with combined situational and normative knowledge (CulB). In the case of Random 

the agent generates a use action using randomly generated attribute values. In addition, Original is used to 

represent the results where agents are assumed to know the soil productivity and EvStrategy is used for agents 

evolving strategies. Results for every conducted experiment shows the number of agents that survived at the end 

of each classified phase. In the first set of experiments agents learn with specified strategies. The first test case 

compares the cultural and social learning strategies: CulS, CulN and CulB, SocRRad and SocLRad. Results are 

shown in Table I. Next we compare agents that are not  learning with a strategy from each of the three main 

categories: Random, Indv, CulB and SocLRad with results shown in Table 2. Finally a comparison is done 

between combined strategies: Indv+ SocLRad, Indv + CulB, SocLRad + CulB and Indv + SocLRad+ CulB. 

Results are shown in Table 3. The next experiment investigates agents evolving strategies. For this, there is a 

single test case where the results of agents evolving with randomly chosen strategies are compared to those with 

learned ones. Results are depicted in Table 4. With agents still stripped of all tasks except farming, trading 

disallowed and relocation or cells for planting selected only on the basis of productivity, the final experiment 

compares results for agents that know productivity at all times with the results of SocLRad. For this, the survival 

of the population is shown in Table 5. 

5. Discussion 

The conducted experiments examine the survival rate of the population throughout the evolutionary process by 

tracking the number of agents that survive at the end of each of the classification phases defined in Section 4.1. 

Table 1: Agent survival for cultural-learning and social-learning agents at the end of each classification phase 

Phase CulS CulN CulB SocRRad SocLRad 

Start 600 600 600 600 600 

BasketMaker III 28 85 29 65 303 

Pueblo I 6 3 19 31 514 

Pueblo II 0 0 0 2 1653 

Pueblo III 0 0 0 0 2932 
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Table 2: Agent survival for agents not learning compared with agents learning at the end of each classification 

phase 

Phase Random Indv CulB SocLRad 

Start 600 600 600 600 

BasketMaker III 14 21 29 303 

Pueblo I 0 0 19 514 

Pueblo II 0 0 0 1653 

Pueblo III 0 0 0 2932 

Table 3: Agent survival for combined learning strategies at the end of each classification phase 

Phase Indv+SocLRad Indv+SocLRad+CulB Indv+CulB SocLRad+CulB 

Start 600 600 600 600 

BasketMaker III 181 132 42 142 

Pueblo I 154 218 1 205 

Pueblo II 265 357 0 288 

Pueblo III 492 394 0 321 

Table 1 shows the results of the test case which compares CulS, CulN and CulB, SocRRad and SocLRad. 

Although all cultural learning agents die by the end of Pueblo II, CulB agents slightly outlive the others. 

Interestingly, at the end of Basketmaker III, CulN agents have a higher survival count but are outperformed by 

CulB agents in the next phase. This raises the question whether a particular strategy can be considered better 

during a certain phase. Agents learning culturally are influenced by the exemplars in the belief space extracted 

from the population at large. Results suggest that solutions discovered by the population’s best performers may 

not be appropriate for most agents. Also, the frequency of belief space updates may play a role as agents may 

start to underperform before a better solution is available. Comparing the cultural learning strategies of SocLRad 

with SocRRad, it is demonstrated that the size of the agent’s network plays a significant role in its chances for 

survival. SocRRad agents barely survive through Pueblo I with results similar to CulB. SocLRad agents survive 

all phases with a notable increase in each phase after BasketMaker III. It is likely that these agents learn to use a 

smaller radius in homogeneous regions and widen their radius in heterogeneous ones. In general, the social 

learning agents outlive those learning via the cultural learning methods. Table 2 shows very little difference 

between Random and Indv agents. Neither one makes it to Pueblo I. CulB has a slight edge barely surviving 

through Pueblo I but once again the superiority of SocLRad is evident. Results with various learning strategy 

combinations in Table 3 show the importance of social learning on the LANDSCAPE artifact. Although lower 

than SocLRad employed on its own, the survival count remains positive for any combined strategy that includes 

it. By contrast Indv + CulB agents are gone by the end of Pueblo I. Once again there some notable performance 

differences between the strategies in different phases. For instance, while Indv + SocLRad seems outperformed 

by Indv + SocLRad + CulB in Pueblo I and Pueblo II it ends up with the highest survival count at the end of 

Pueblo III. Ultimately SocLRad + CulB seems to be the most consistent improving slightly with each phase. 
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Table 4: Agent survival at the end of each classification phase for agents randomly choosing strategies 

compared with agents evolving strategies 

Phase Random EvStrategy 

Start 600 600 

BasketMaker III 77 101 

Pueblo I 14 139 

Pueblo II 0 154 

Pueblo III 0 144 

Results depicted in Table 4 demonstrate that when agents are evolving strategies the population struggles to 

survive. However, there is a better performance when strategies are evolved rather than not. It is possible that an 

agent surviving with a particular strategy does not learn an appropriate one in time given the dynamic nature of 

the environment. 

Table 5: Agent survival for agents in the original simulation that know productivity compared with agents 

learning 

Phase SocLRad Original 

Start 600 600 

BasketMaker III 303 2958 

Pueblo I 514 9682 

Pueblo II 1653 9825 

Pueblo III 2932 10338 

Table 5 shows the results of the final experiment which compares SocLRad to Original. Although there is a 

significant difference in the survival counts, it is evident that SocLRad agents survive just as their Original 

counterparts do. Possible reasons for the difference include our representation of LANDSCAPE with only five 

functional attributes. and the assumption that all agents are completely unaware of the productivity of the soil. If 

we seeded good solutions into some of the agents at the start such as is done to implement observational 

learning in Mokom and Kobti[15] it may be possible to achieve results much closer to those obtained by 

Original. In particular since the results demonstrate the effectiveness of knowledge propagation through the 

social networks a few knowledgeable members of the population maybe enough to significantly influence the 

survival rate.  

6. Conclusions and future work 

This study provides a model for incorporating agents learning and adapting the use of objects and artifacts 

towards realizing their goals. The model extends the artifact abstraction in MAS[19] to include evolution and 

learning for social and cultural agents. Formal definitions for artifacts and agents reasoning about their use in 

MABS are provided along with a variety of learning strategies that agents can employ towards enhancing their 
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capabilities taking advantage of others in their environment. An existing Village multi-agent based simulation 

[25] which models the lives of the ancient Pueblo Indians spanning almost 700 years is utilized as a case study. 

With agents represented as households farming for survival the landscape is modeled as an artifact abstraction 

that agents learn to exploit from a representation of a few of its attributes. Given the fact that the landscape is 

dynamic with productivity changing over time, and characterized by agents entering, leaving and relocating as 

they strive to survive, learning and adaptation is essential for every agent. Experiments conducted track the 

survival of the agents and identify agents learning through social influence concurrently evolving the size of 

their social network as the most successful strategy. It is important to note that while it proves to be the best 

with this particular case study different strategies may prove better in other applications. While this model may 

prove useful in many situations, there are also some limitations. Fundamentally, the model assumes a reduction 

of an artifact to a set of functional attributes. Since these attributes can be numerous, the model may prove 

intractable for problems where a small set of attributes would be insufficient to obtain useful results. In addition, 

as in the case with many agent-based simulations, model parameters often need to be fine-tuned in order to 

examine their role and impact. For future work it would be useful to compare the findings with the archeological 

records. Additional attributes could be used to define LANDSCAPE to observe if agents learn better or faster. In 

enhancing the case study agents could be modeled to exploit real tools for farming or hunting. It may also be 

useful to investigate the possible effects on survival when a percentage of the agents are aware of the 

productivity at the start of the simulation. In the model all agents are equally susceptible to positive influences. 

It may be useful to address the possibility that some agents are resistant. Finally, the model has only measure 

done aspect, the survival of the agents. It may be relevant to investigate other aspects of the simulation such as 

family size and spatial distribution of the agents in each phase.  

7. Recommendations 

To address the fact that a few useful functional attributes for an artifact being studied should be identified in 

order to obtain useful results from the model, it is recommended that any application of the model to a particular 

domain be conducted with the assistance of an expert in that domain. This will ensure that the attributes chosen 

for evolution prove to be relevant for the problem being addressed. These experts can also play a significant role 

in the tweaking of the model parameters towards the discovery of emergent behavior in the model. This aspect 

was applied in the case study for the Village Ecodynamics project, where archaeologists selected the features of 

the landscape that were to be evolved.  
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