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Abstract 

Timetable scheduling is an important aspect of decision-making in any organisation, particularly in academia. 

An examination timetable is expected to coordinate students, invigilators, courses, examination hall allocation, 

and time slots. However, the problem could be viewed as a Nondeterministic Polynomial (NP); NP-hard 

problem, scheduling problem has plagued humanity since its inception. Due to the complex structure of the 

problem in terms of hard and soft-constraints, most organisations schedule time inefficiently using manual 

approach. This study introduced an algorithms hybridisation method of genetic and greedy algorithms to 

automate the timetable scheduling process efficiently. A genetic algorithm is a heuristic search technique based 

on Charles Darwin's theory of natural evolution. The fitness of each course, venue, and faculty content is 

determined by the probabilistic optimisation which is the solution candidate in the initial population of all the 

objects. Subsequently, the greedy algorithm's activities selector selects the best solution. The output 

demonstrates that the method effectively handled all the constraints associated with timetable scheduling. 

Hybridising the two algorithms to build a scheduling system, such as the examination timetable. Therefore, it is 

a viable option to combine genetic and greedy algorithms to have an optimised examination timetable that is 

flexible to any situation. 
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1. Introduction 

The Genetic Algorithms (GAs) have been in use in various scheduling activities such as patients, doctors, and 

medicinal gadgets, creating each object as an abstract resource and capturing domain knowledge as specific 

rules [21]. Exam scheduling is a well-known and well researched topic that can be solved using genetic 

algorithms, as demonstrated by [20,3]. 

Time table scheduling is very important to enable decision-makers to make right decisions in every organised 

organisation. Time-table scheduling is an imperative activity when it comes to academic areas. Therefore, 

school calendars must be properly scheduled. There are problems facing academic time-table scheduling, due to 

manual construction; example of such problem is inaccurate due to some constraints. This area of research has 

attracted many researchers, and many researchers have worked on thisarea [1].  

As a result, because the scheduling problem is known to be a Non-Polynomial complete problem [9], employing 

heuristic techniques and a greedy approach can efficiently and reliably solve the problem. Heuristics are 

classified into three types: iterative improvement algorithms, probabilistic optimisation algorithms, and 

constructive heuristics. In the probabilistic optimisation group, Genetic Algorithms-based methods are 

significant, and they have been thoroughly proposed in this research effort alongside Greedy Algorithm for 

selection based on situation requirement. 

Reference [5] define a timetable as a mechanism for scheduling available time and resources for any operation 

or activity. Nonetheless, this system faces numerous obstacles as a result of the desire to create one that is both 

successful and efficient. The amount of research activity in the domain of timetable development has 

significantly increased. The emergence of a series of articles and international conferences on the theory and 

application of automated time-table systems demonstrates this. There are numerous limits that must be 

addressed when developing a University Examination timeline.Practically, there are two major constraints; Soft 

constraints and Hard constraints. 

2. Literature review 

2.1 Time-table problems 

There are challenges during the creation of the examination timetable such as the allocation of venues to the 

sizable number of students; there is a need to judiciously use all the available resources during the examination 

period which means that all the available venues must be known and the size of the students that such venue can 

accommodate. Number of courses that would be taken during the examination periods and the number of hours 

that each course will be occupied during the examination period. There will be a consideration ofthe number of 

days the examination will occupy. The major constraint that this research work is tackling is the area of 

preference or priority for some courses in examination periods due to some peculiar demands [10].  

There are limited available spaces despite the increase in students in our schools, which has led to numerous 

challenges in allocating resources throughout the examination timetable creation process. Among these issues 
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are the waste of space resources during the examination period, invigilators' unawareness of invigilation 

allocation, poor resource management, and a poor communication system between the scheduling committee 

and the invigilators. Insecurity of files as a result of manual timetable development, causing difficulty in 

referring to it, and clashes in examination schedules for different examination courses.Another critical area of 

the problem is when one or two courses are being taught by the head of the department and in a situation where 

those courses require preference because the lecturer in charge has some other administrative duties to attend to 

andthose coursescan start earlier. 

It is worth examining the effect of the hybridisation of the genetic algorithm and greedy programming since 

both can be used for optimisation problems, especially in time-table scheduling rather than using only the 

genetic algorithm orthe greedy algorithm.In these days of fast computing and high technology information 

science, this problem of examination time-table can best be handled using a computer [19,2]. 

2.2 Genetic algorithm (ga) 

According to Lukas and his colleagues [17], the Genetic Algorithm (GA) effectively addressed assignment 

difficulties. GA has frequently been used to create university exam schedules [3]. According to Ghasemi, 

Handley and  Howarth [13] heuristic search can be used to tackle scheduling challenges in any organised 

institution, such as a university. The job of the genetic algorithm is to decide the sequence of all courses to be 

arranged in one group, whereas the job of the heuristic search is to discover the time slots used to schedule the 

courses [22,17]. 

Genetic algorithms are a black-box optimisation method inspired by biological evolution concepts. While they 

serve as a general-purpose optimisation tool, their specific instantiations can be heuristic and driven by a small 

quantity of biological intuition [13].They routinely reveal globally optimal answers even in the most complex 

search fields. They work with a population of coded solutions chosen for their quality and then used as the 

foundation for a new generation of solutions discovered by combining (crossover) or changing (mutating) 

existing individuals. The search process has traditionally been domain-independent, meaning that the crossover 

and mutation operators do not know a suitable solution [3]. 

The genetic algorithm has proven to be a tremendously effective and successful problem-solving approach, 

displaying the strength of evolutionary principles. In a variety of domains, genetic algorithms have been 

employed to create solutions to challenges that are as complicated as or more complex than those encountered 

by human designers. Furthermore, the solutions they develop are frequently more efficient, elegant, or 

complicated than anything comparable produced by a human engineer. In certain circumstances, genetic 

algorithms have produced results that have perplexed the developers who developed the algorithms at first 

instance [23].  

2.3 Related works 

A graph-coloring-based algorithm for the exam scheduling application was introduced by [18] with the the aim 

to achieving fairness, accuracy, and optimal exam time period. Some few assumptions were considered in terms 
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of constraints that were related to the exam scheduling problem generally in universities. An autonomous exam-

scheduling algorithm was built to ensure fairness while shortening the exam period. The experiment yielded a 

graph-coloring-based test scheduling algorithm that meets the objectives of fairness, accuracy, and optimal 

exam time period. Numerous studies have been conducted to address the issue of exam scheduling [3,4,14]. In 

nutshell, the algorithm consists of two major steps. The first step builds the weight matrix and graph. The 

second step assigns colors to the nodes of the graph.The method first represents the courses by graph nodes, 

where 2 nodes are adjacent if at least one student registers the 2 corresponding courses. Then, it is required to 

assign each course represented by a node a time slot, such that no two adjacent nodes have the same slot, in 

condition that a set of constraints imposed on the problem are also met.This problem was solved by using node 

graph coloring technique.The set of assumptions and restrictions taken into account is the main distinction 

between diverse investigations. For instance, Burke, Elliman, and Weare [3] used graph coloring to adopt a 

similar strategy. However, they did not apply any restrictions to their method; they just dealt with disputes. 

In the same vein, East, [10] worked on genetic algorithm machine learning technique to create course timetables 

for a university. The algorithm improved timetables with user preferences within the limits of a schedule. The 

timetables generated devoid of any conflicting scheduled modules for lecturers, students, or venues. The 

algorithm is given over a web API and executed effectively on an enterprise Java application server running in 

the cloud.A database housed all the entities that need to be planned into a timetable. The algorithm, a user 

interface running as a contemporary web app, and the database service with its own API were all put into a 

service-oriented architecture. The use of genetic algorithms within the framework of the issue domain is used, 

along with the specifics of this application's development. 

By combining a binary crossover at a high crossover rate with a roulette-wheel selection modified to always 

select several of the top, most-fit candidate solutions per generation, a published example of using a genetic 

algorithm to schedule truck loading dock usage provided concrete evidence of high convergence speed [8]. 

According to the objectives of this research and using the Java programming language, Reference [15] provided 

an example of using a genetic algorithm to schedule college courses with instructors into lecture halls. 

According to [1] in the article, A Novel Educational Timetabling Solution through Recursive Genetic 

Algorithms. The research sought solutions that satisfied the hard constraints while minimising soft constraint 

breaches. Furthermore, colleges frequently differ in terms of limits and the number of professors, courses, and 

resources involved, increasing the challenge's scale and complexity. We offer a simple, scalable, and 

customisable way to solving Timetabling Problems for numerous courses by recursively using Genetic 

Algorithms, which are efficient search methods used to produce an optimal or near ideal timetable. 

In this work,the limitations of educational timetable schedulingwere included in the fitness function and can be 

simply added or removed.The Federal Institute of Cear's environment served as the basis for the definition of the 

soft and hard restrictions taken into consideration in the work.The soft restrictions are (i) neighboring lectures 

(more than three classes in a row) and (ii) agent unavailability (agents unavailable owing to other activity). The 

hard constraints include (i) agent matches when agents are allocated to contemporaneous events and (ii) 

overlapping lectures from the same course semester, which reduces overlapping lectures of courses with 
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common students.The methodology addresses course timetabling challenges using Genetic Algorithms recursive 

executions, yielding a global timetable. 

3. Methodology of the system 

3.1 Modeling the examination timetable system  

Modeling is creating specifications from which a new system will emerge [12]. Its goal is to create 

specifications allowing the new system to be completed and implemented correctly. Modeling must also be 

sensitive to changes.These aims and objectives may occur over time in response to adjustments in the 

demanding environment.  

The timetable structure that will be formed is made up of input data, the relationship between the input data, and 

the application of the genetic algorithm. 

The input data contains: 

1) Supervisor: Defines the names and identifying numbers of the lecturers. 

2) Course-code: It depicts the names of current term courses. 

3) Venue: The data describes the room number and capacity of the exam room. 

4) Tim-slot: It specifies the start time as well as the length of a lecture. 

5) Day:It specifies the specific day of the week on which the exam will be administered. 

These are the content of chromosome which are genes. 

The heuristic search is used in this study, a two-dimensional matrix known as the times matrix is used. This 

matrix identifies appropriate time slots for scheduling courses [22]. This times matrix employs five sets, as 

previously stated. They are C=Cc1,Cc2,...,Ccn, type Venue set V=v1,v2,...,vn, supervisor code set 

S=S1,S2,...,Sn, day set D=d1,d2,..., dn, and time-slot set TS=ts1,ts2,..., tn. All index sets begin with one.The 

Course-code set, Supervisor set, and Time-Slot set all have close relationships. Assume that one of the 

relationships is Cc1, S1, TS1, suggesting that Course-code Cc1 is to be completed in TS1 and supervised by S1.  

Furthermore, D1, V1 is a relation, which signifies that on day D1 on V1 is assigned.If Cc1, S1, TS1 is 

associated with D1, V1, it signifies that the Course-code Cc1exam will be held in Time-slot TS1 and overseen 

by supervisor S1 on Day D1 at Venue V1. All course code, time slot, and supervisor code pairs must be linked 

to all day and venue pairings. This connection is recorded in a matrix known as the times matrix.The number of 

rows required is calculated by multiplying the number of venues by the number of days in a week by the number 

of time slots in a day. There are two venues, V1 and V2, that are scheduled on the same day but have separate 

time slots, D1,TS1 and D1,TS2 for the course-code Cc1 supervised by S1 and Cc2 supervised by S2. Each cell 
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in the times matrix is subjected to five functions. These functions are fcc, fts, fs, fd, and fv, and they are used to 

obtain information on the course code, time-slot, supervisor, venue, and day, in that order. fCc(v11)=Cc1, 

fTS(v11)=TS, fS(v11)=S1, fV(v11)= V1, fD(v11)= D1. All of these functions are combined to form a times 

matrix. 

Assume that the sequence of courses represented by created chromosome [1, 2] reflects Cc1, TS1, S1 and Cc2, 

TS1, S2; the first course to be scheduled is gene chromosome code Cc1, TS1, S1, and the last is Cc4, TS1, S4. 

The outcome is shown in Table 3.1. Cc1, TS1, S1 are successfully scheduled on (V1, D1, TS1), (V1, D1,TS2), 

(V2, D1,TS1), and (V2, D1,TS2). Table 3.1 shows that chromosome [1, 2] can allocate four courses to two 

venues, V1 and V2, for two time slots, TS1 and TS2 in V1 and TS1 and TS2 in V2. 

The value of 4 over 4, which is 1, is referred to as the chromosome's fitness. The fitness is 1 if the chromosome 

is [1, 2]. The fitness of a chromosome represents the goal of the time table. In this scenario in Fig. 1, the goal is 

to maximise the number of courses that can be planned for each timetable. If s(k) is the number of courses 

scheduled for the kth column, p is the maximum column in a times matrix, u(j) is the unit number of jth students 

to be scheduled for each venue name, and t is the total number of students for each venue name, then fitness of a 

chromosome is defined as 1. 

 

Figure 1: Mathematical Expressions for Fitness 

There are numerous timeframes for university examinations. Because each department's degree is structured for 

four to five years of study, each department has at least four-time tables for each semester. Each batch has its 

own timetable. There is only one-time table in one department, no matter how large the batch is. It has no effect 

on the processing time. The longer the processing time to generate the time table, the larger the batch. This is 

due to the fact that the target matrix will have a greater number of rows as well as columns. 

3.2 Pseudocode of genetic algorthim 

The algorithm below demonstrates the simplicity of genetic algorithm to generates the fit population for the 

examination timetable schedule. 

t = 0 

Initialize P (t) 
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Evaluate P (t) 

while Termination condition is not satisfied do 

Selection P(t + 1) from P(t) Perform Crossover on P(t + 1) Perform Mutation on 

P(t + 1) Evaluate P(t + 1) 

Replace P(t) with P(t + 1) 

t = t + 1 

end while 

Where P is the population path to each resource (Staff, Students), and t is the resource (Day, Time, Venues). 

After scheduling a resource, the population path to that resource is erased to prevent it from being rescheduled 

using the operators' Selection, Crossover, Mutation, and Evaluation.  

Initial population:The formation of an initial population is the first step in the operation of a GA. Each 

individual in this group encodes a potential solution to a problem. Following the generation of the initial 

population, each individual is examined and awarded a fitness value based on the fitness function. It has been 

established that if the initial population of the GA is good, the algorithm will have a better chance of finding a 

decent solution. 

1)Selection:This operator chooses which chromosomes in the population will reproduce. The better the fit, the 

more likely it is to be picked for reproduction. 

2)Crossover:The crossover is a genetic operator used in genetic algorithms to modify the programming of a 

chromosome or chromosomes from generation to generation. It is similar to reproduction and biological 

crossover, which are the pillars of genetic algorithms. The practice of integrating numerous parent solutions to 

form a kid solution is known as crossover. There are methods for choosing chromosomes. This operator selects 

a locus randomly and swaps the subsequence between two chromosomes before and after that locus to produce 

two progenies. For example, the strings 11000100 and 11111100 might be crossed after the third locus in each 

to generate 11011100 and 11100100. The crossover operator is designed to approximate biological 

recombination between two chromosomes. 

3)Mutation:Mutation is a genetic operator that is employed to maintain genetic diversity in a population of 

genetic algorithm chromosomes from generation to generation. It is analogous to biological mutation. A 

mutation alters the values of one or more genes on a chromosome from their original state. The solution in 

mutation may be drastically different from the previous solution. As a result, by using mutation, GA can achieve 

a better solution. This operator flips some of the bits of a chromosome at random. For instance, the string 

00000100 could be modified in its second position to produce 01000100. Mutation can occur with a tiny chance 

at each bit location in a string. 

4)  Evaluation:An evaluation is a test that is performed on the operation's outcome in terms of producing the 

best chromosomes. It is used to assess the fitness of such chromosomes. 
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3.3 Pseudocode of greedy algorthim 

There is a list of activities with starting and ending timings for this algorithm. However, the goal is to choose the 

greatest number of non-conflicting tasks that a person or machine can execute at the same time, given that the 

person or machine can only work on one activity at a time. If the starting time of one activity is higher than or 

equal to the finishing time of the other, the two activities are said to be non-conflicting as illustrated in Fig. 2. 

To address this issue, the activities were arranged in ascending order based on their completion time. 

 

Figure 2: Shows un-schedule Activities in terms of Day and Time. 

The above Fig 3.3 shows the given activities regarding the unscheduled time and days. A, B, C, D, E, F, G, and 

H are the given activities which represent the courses in the examination which need to be scheduled in a day 

with time. Assuming each activity has three hours before expiration according to the above diagram. We look 

for a way to schedule these given activities so that each activity will not affect theother within a given venue. 

Below are un-scheduled activities with time; assuming there are eight activities like in the table below to 

schedule for a day and in the computer science department in the University of Ibadan,there are only three 

venues for the examination such as Koladaisi Lecture Theatre (KDLT), Computer science Lecture Theatre 

(CLT) and Post Graduate (PGC)classroom which were tagged with venue 1, venue 2 and venue 3 respectively. 

Moreover, all these venues have different capacities in terms of fitness. Meanwhile, the genetic algorithm has 
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already determined fitness in terms of population to a venue capacity.  

The steps below illustrate how activities are scheduled with respect to time. 

PERFORM STEP 3 UNTIL all activities are checked 

Steps in activities selector algorithm 

Step 1: arrange the activities in the order of their finishing time. 

Step 2: choose the first activity 

Step 3: choose the next activity whose start time is greater than or equal to the prior activity's finish time. 

Pseudo Code 

 

Leti = 0;           //pointing at first element 

    for k = 1 to n-1 do    //n denotes the length of activities 

          if start time of k>= finish time of i then 

    Print k 

Let i = k 

          endif 

endfor 

This pseudocode was used in order to get the ordered date of the examination, Time-slot (start-time and 

finished-time), where n is a variable that holds the total number of activities to be scheduled. i is the first activity 

with the lowest finishing time for the schedule; if the starting time of activity k is greater than or equal to the 

finishing time of activity i, then activity i will be executed. This action will be repeated for all the activities until 

all the finishing times of the activities are in ascending order. 

It is assumed that the number of students that offer courses A, D and G are vast in population. Therefore, these 

three courses can be scheduled for the same venue with a large capacity supporting such a population. 

Also, activities (courses) like C, E and H are within the range of a population that can be fixed into another 

venue called Venue 2 or CLT. So, for the remaining activities, B and F could be scheduled into another Venue 3 

since the population can fit into the capacity of the venue. All these activities are scheduled for a single day in 

all three available venues. 

Activity selector algorithms are applied for each venue todetermine the order in which activities will occur. At 

this point,the preferred activities could be determined before another by giving it a time slot that matches our 

desire. Then, from these, it shows how flexible our timetable can be in order to meet the purpose or desired 

goals. 
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At the Computer Science Department, University of Ibadan, there are four levels, from 100 to 400 levels, from 

year 1 to year 4. In this research work, one semester of data was used. Certain numbers of courses, venues, 

supervisors, days and time-slots to be scheduled for every level are inputted. For example, in the 100 level, 

which is year one, is assumed they have 7 courses; in 200 level,there are 10 courses, also in the 300 level,there 

are 12 courses; and in 400level,there are 10, all the available venue are just three and the period for the exams is 

just two weeks which means there are only 10days. Each day has two examination time–slots. 

The total number of course-codes are: 7+10+12+10 =39 

Total number of venues available = 3 

Total number of days = 10 days (i.e Monday to Friday of every week) 

Total time slot per day = 3 (i.e Morning, Afternoon and Evening) 

Total number of supervisors = 20 

All these are the initial population for the genetic algorithms. 

Table 1: Relationship among the gene to form chromosome for times matrix. 

         Cc1, TS1, V1 Cc2, TS2, V2        Cc3, TS3, V3 

WK1,D1                      1                 1            1 

WK1,D2                      1                 1            1 

WK1,D3                      1                 1            1 

WK1,D4                      1                 1            1 

WK1,D5                      1                  1            1 

WK2D1                      1                  1            1 

WK2,D2                      1                  1            1 

WK2,D3                      1                  1            1 

WK2,D4                      1                  1            1 

WK2,D5                      1                  1            1 

WK3,D1                      1                      0            1 

 

Table1, shows that n(Cc)=39, n(S)=64, n(V)=3, n(D)=11, and sn(TS)=3. In the genetic algorithm, all of these 

make up the chromosome's genes. The times matrix has two columns and eleven rows. Following receipt of 

preliminary data, such as the restricted day and time for a certain venue, what venue can be used, and the 

capacity of that facility. 

The highest best fitness value, 1, can be attained if the system runs with 11 chromosomes in a population and 11 
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generations are set in the experiment without taking into account the chance of selection, crossover, and 

mutation. This means that all classes can be scheduled as needed. As a result, the number of populations and 

generations must be limited. It means that creating a schedule will take less time. 

4. Results presentation and discussion 

4.1 User interface design 

This is a graphical user interface. The section of this program allows the user to input data into the system to 

create an initial population concerning genetic algorithms. This aspect makes this program very friendly and 

vividly understood. Its major function is to allow users to enter the initial data requiredto constructthe 

examination timetable. 

4.1.1 User authentication 

The user authentication page authorises the system's authentic users to access the system. 

 

Figure 3: Login portal. 

Fig. 3, demonstrates the usage of a username and password to protect the information in the system from 

unauthorised users. The administrator would create the username and password for the faculty users to access 

the new examination timetable system. 

4.1.2 Course scheduling for the examination timetable 

Fig. 4.5 helps the administrator to schedule all registered courses for the session, and this helps to avoid 

duplication of records in the database,for instance, rescheduling one course twice 
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Figure 4: Scheduling courses and supervisors' 

Fig. 4, illustrates how supervisors are scheduled for invigilation during the examination period. 

4.1.3     Venue scheduling for the examination timetable 

Fig. 5, helps the administrator to allocate venues, considering the venue capacity, so as to assign an appropriate 

course to the venue base on the capacity of the venue. 

 

Figure 5: Scheduling venue for examination. 

The above activities of the new system show a graphic user interface in which all the necessary data to form 

chromosomes in genetic algorithms were collected. 

4.1.5 Examination timetable   results 

Theoutput of implementingthe hybridised genetic and greedy algorithms for the examination timetable is clearly 
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illustrated. The programming language used was Java and Microsoft SQL server for implementation. The 

timetable shows the scheduled time for each course with respect to days and the allocated venue for every 

course. This result clearly revealed the effectiveness of the greedy algorithm because it selected the courses that 

belong to the same venue according to the time allocated to every course. The time allocated to each course 

shows that early time courses are given priority in the timetable construction.Fig. 7depicts the timetable 

generated after the resources werescheduled. 

 

Figure 7: Generated Examination Timetable 

4.2 Results discussion 

The resultof this study reveals that using both the genetic and the greedy algorithms for timetable construction is 

very efficient in handling all the constraints, aforementioned. This assertion was in line with the East [10] and 

Alves [1]. 

The output resultsshow that every examination venue in the department will be used every day. However, each 

examination venue has three-time slots allocated to it daily.As revealed from the result, only students in the 

higher level like 200level, 300level and 400level can have carry-over courses from their previous classes. The 

result of the system's output was able to handle the schedule so that there is no course clash in the timetable.  

Again, the result shows that if the 200-level student has a 100-level course carry-over, this system shows that 

the 200-level student can sit for the carry-over course without interfering with any of the 200-level courses. The 

resultdemonstrates that the system schedules the timetable so that any 200-level, 300-level or 400-level student 

can attend to their carry-over. At the same time, it will not clash with their current class examination. Also, 

students in the 300-level can have carry-over in the 100-level and 200-level, which means that none of the 100-

level, 200-level and their current class examinations should be scheduled for the same time sloton the same day, 

even in a different examination venue. The same thing will be repeated for the advantage of 400-level students 

so that they can have the opportunity to attend to their carry-overs. 

The graph in Figure 4.1 showsthe time taken to complete the fitness test with respect to the number of the initial 
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population. The graph reinforced the claim of  Foy, Benekohal and Goldberg [11] on signal timing 

determination using genetic algorithmsthat the higher the number of the initial population for the genetic 

algorithm to be tested, the higher the time taken to determine the fitness of that population. Malkawi, Hassan 

and Hassan [18] report also substantiate the findingswith respect to the timing of fitness. 

Table 2: Average time used to determine the fitness with population size 

Serial No     Population sizes AverageTime(milliseconds) 

     1               10                 1.31 

      2               15                 1.06 

      3               20                 1.903 

      4               25                 2.543 

      5               30                 3.31 

      6               35                 3.385 

      7               40                 3.775 

 

When this result is compared with other researchers'findings, it was discovered that the time taken to construct 

this examination timetableimproved. The involvement of a greedy algorithm in the course schedule contributed 

to the optimisation. Consequently, the hybridisationenhanced the resolutionof the problem identified by 

Malkawi, Hassan and Hassan [18] regarding future work inimproving timetable scheduling processes. 

5. Conclusion 

This paper presented a hybridised algorithm to tackle timetabling scheduling problems.The model enhanced 

examination timetable scheduling or any time scheduling activities. The technique optimally reduced the time 

and space wastage with respect to the student population and venue capacity. The concurrent exam sessions 

were efficiently handled, and the best fit was selected for every available resource. The model worked based on 

the time allocated to each course, which looks for the best of the fittest candidate from genetically evaluated 

results first and schedules it before taking the next fittest for scheduling. 

In light of the above, when an examination timetable is to be constructed efficiently, it is better to use both 

genetic and greedy algorithms. In thiscase, each of these algorithms performs its duty constructively. The 

combination of this algorithm is better than using only a genetic algorithm for timetable scheduling. There have 

been hybridised scheduling systems, in which a modified graph coloring algorithm is used to generate a 

population of workable but unoptimised timetables, and then a genetic algorithm is used to choose an optimal 

timetable Burke, Elliman and Weare [3]. This combined algorithm approach is functional, but a pure genetic 

algorithm approach is nearly as efficient, and a solution can be reached nearly as quickly by starting with 

randomised, invalid timetables and using the fitness function to select for both more feasible and more 

optimised individuals. 
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According to De Jong, 1988 if the required domain information is totally understood and can be used to create a 

traditional search algorithm, such an approach should be chosen. A classical algorithm can leverage a surplus of 

information more effectively than a genetic algorithm. A genetic algorithm approach is preferable for organising 

a timetable compared to the offered alternatives because of the flexibility of the fitness function to distil 

complicated notions of real-world domain knowledge of the problem down into local comparisons [10]. 

Reference 

[1]. Alves, S. S., Oliveira, S. A., & Neto, A. R. R. (2015, October). A novel educational timetabling 

solution through recursive genetic algorithms. In 2015 Latin America Congress on Computational 

Intelligence (LA-CCI) (pp. 1-6). IEEE. 

[2]. Bagga, S., Gupta, S., & Sharma, D. K. (2019). Computer-assisted anthropology. In Internet of Things 

in Biomedical Engineering (pp. 21-47). Academic Press. 

[3]. Burke E., Elliman D., and Weare R., "A University Timetabling System Based on Graph Coloring and 

Constraint Manipulation," Journal of Research on Computing in Education, vol. 27, no. 1, pp. 1-18, 

1994.  

[4]. Burke E., Elliman D., and Weare R., "Automated Scheduling of University Exams," Department of 

Computer Science, University of Nottingham, 1993. 

[5]. Burke E.K, Eckersley B.J. McCollum, Petrovic S, and Qiu R., (2004). "Analysing Similarity in 

Examination Timetabling". 5th International Conference on the Practice and Theory of Automated 

Timetabling. Pittsburgh, PA USA. 

[6]. Burke, E. K., & Newall, J. P. (1999). A multistage evolutionary algorithm for the timetable 

problem. IEEE transactions on evolutionary computation, 3(1), 63-74. 

[7]. Burke, E. K., Newall, J. P., &Weare, R. F. (1996). A memetic algorithm for university exam 

timetabling. In Practice and Theory of Automated Timetabling: First International Conference 

Edinburgh, UK, August 29–September 1, 1995 Selected Papers 1 (pp. 241-250). Springer Berlin 

Heidelberg. 

[8]. Cekała T., Z. Telec and B. Trawiński, "Truck loading schedule optimisation using genetic algorithm 

for yard management," in ACIIDS 2015: Intelligent Information and Database Systems, Bali, 

Indonesia, 2015.  

[9]. Cooper, T. B., Kingston, J. H. (1995). The Complexity of Timetable Construction 

Problems.http://www.cs.usyd.edu.au/~jeff/. 

[10]. East, A. R. (2019). Timetable Scheduling via Genetic Algorithm. National University of Ireland. 

[11]. Foy, M. D., Benekohal, R. F., & Goldberg, D. E. (1992). Signal timing determination using genetic 

algorithms. Transportation Research Record, (1365), 108. 

[12]. Gajski, D. D., Zhu, J., Dömer, R., Gerstlauer, A., & Zhao, S. (2012). SpecC: Specification language 

and methodology. Springer Science & Business Media. 

[13]. Ghasemi, O., Handley, S., & Howarth, S. (2022). Illusory intuitive inferences: Matching heuristics 

explain logical intuitions. Available at SSRN 4235957. 

[14]. Husseini, S., Malkawi, M., & Vairavan, K. (1992). Distributed Algorithms for Edge Coloring of 

Graphs. In the 5th ISMM International Conference on Parallel and Distributed Computing Systems. 



International Journal of Computer (IJC) - Volume 51, No  1, pp 1-16 

16 
 

[15]. Jacobson L. and Kanber B.(2015). “Genetic Algorithms in Java Basics: Solve Classical Problems like 

The Travelling Salesman with GA.” (1
st
 edition) ). [On-line]. pp. 139-151. Available: 

https://link.springer.com/book/10.1007/978-1-4842-0328-6 [May 31, 2024]. 

[16]. Lange, R., Schaul, T., Chen, Y., Lu, C., Zahavy, T., Dalibard, V., & Flennerhag, S. (2023, July). 

“Discovering attention-based genetic algorithms via meta-black-box optimization.” In Proceedings of 

the Genetic and Evolutionary Computation Conference (pp. 929-937). 

[17]. Lukas, S., Aribowo, A., &Muchri, M. (2012). “Solving timetable problem by genetic algorithm and 

heuristic search case study: universitas pelitaharapan timetable.” Real-World Applications of Genetic 

Algorithms, 3(78), pp.303-316. 

[18]. Malkawi, M., Hassan, M. A. H., & Hassan, O. A. H. (2008). A New Exam Scheduling Algorithm 

Using Graph Coloring. International Arab Journal of Information Technology (IAJIT), 5(1). 

[19]. Margaret Rouse (2023), Information and Communication Technology (ICT), 

https://www.techopedia.com/definition/24152/information-and-communications-technology-ict 

Accessed 28 June, 2023. 

[20]. Nie S. Z.(2014), "A Java EE platform test system based on improved genetic algorithm," Applied 

Mechanics and Materials. 556(562), pp. 2581-2585. 

[21]. Podgorelec V. and P. Kokol(1997). “Genetic algorithm based system for patient scheduling in highly 

constrained situations.” Journal of Medical Systems. 21(6), pp. 417–427.  

[22]. Thanh, N.D (2007). "Solving Timetabling Problem Using Genetic and Heuristic Algorithms". Eighth 

ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and 

Parallel/Distributed Computing. 33(10), pp. 472-477. 

[23]. Zeebaree, D. Q., Haron, H., Abdulazeez, A. M., &Zeebaree, S. R. (2017). “Combination of K-means 

clustering with Genetic Algorithm:” A review. International Journal of Applied Engineering 

Research. 12(24), pp.14238-14245. 

https://link.springer.com/book/10.1007/978-1-4842-0328-6

