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Abstract 

This paper presents an algorithm for solving the multi-objective reactive power dispatch problem in a power 

system. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and 

maximization of voltage stability margin are taken as the objectives. Generator terminal voltages, reactive 

power generation of the capacitor banks and tap changing transformer setting are taken as the optimization 

variables. This paper presents a new optimization algorithm based on some principles from physics and 

mechanics, which will be called Charged System Search (CSS). We utilize the governing Coulomb law from 

electrostatics and the Newtonian laws of mechanics. CSS is a multi-agent approach in which each agent is a 

Charged Particle (CP). CPs can affect each other based on their fitness values and their separation distances. The 

quantity of the resultant force is determined by using the electrostatics laws and the quality of the movement is 

determined using Newtonian mechanics laws. CSS can be utilized in all optimization fields; especially it is 

suitable for non-smooth or non-convex domains. CSS needs neither the gradient information nor the continuity 

of the search space. Proposed algorithm has been tested in standard IEEE 30 bus test system. 

Keywords: Modal analysis; optimal reactive power; Transmission loss, Charged System Search (CSS);charged 

particle . 
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1. Introduction 

Optimal reactive power dispatch problem is one of the difficult optimization problems in power systems. The 

sources of the reactive power are the generators, synchronous condensers, capacitors, static compensators and 

tap changing transformers. The problem that has to be solved in a reactive power optimization is to determine 

the required reactive generation at various locations so as to optimize the objective function. Here the reactive 

power dispatch problem involves best utilization of the existing generator bus voltage magnitudes, transformer 

tap setting and the output of reactive power sources so as to minimize the loss and to enhance the voltage 

stability of the system. It involves a non linear optimization problem. Various mathematical techniques have 

been adopted to solve this optimal reactive power dispatch problem. These include the gradient method [1-2], 

Newton method [3] and linear programming [4-7].The gradient and Newton methods suffer from the difficulty 

in handling inequality constraints. To apply linear programming, the input- output function is to be expressed as 

a set of linear functions which may lead to loss of accuracy. Recently global Optimization techniques such as 

genetic algorithms have been proposed to solve the reactive power flow problem [8, 9]. 

There are two general methods to optimize a function, namely, mathematical programming and Meta heuristic 

methods. Various mathematical programming methods such as linear programming, homogenous linear 

programming, integer programming, dynamic programming, and nonlinear programming have been applied for 

solving optimization problems. These methods use gradient information to search the solution space near an 

initial starting point. In general, gradient-based methods converge faster and can obtain solutions with higher 

accuracy compared to stochastic approaches in fulfilling the local search task. However, for effective 

implementation of these methods, the variables and cost function of the generators need to be continuous. 

Furthermore, a good starting point is vital for these methods to be executed successfully. In many optimization 

problems, prohibited zones, side limits, and non-smooth or non-convex cost functions need to be considered. As 

a result, these non-convex optimization problems cannot be solved by the traditional mathematical programming 

methods. Although dynamic programming or mixed integer nonlinear programming and their modifications 

offer some facility in solving non-convex problems, these methods, in general, require considerable 

computational effort. As an alternative to the conventional mathematical approaches, the meta-heuristic 

optimization techniques have been used to obtain global or near-global optimum solutions. Due to their 

capability of exploring and finding promising regions in the search space in an affordable time, these methods 

are quite suitable for global searches and furthermore alleviate the need for continuous cost functions and 

variables used for mathematical optimization methods. Though these are approximate methods, i.e., their 

solution are good, but not necessarily optimal, they do not require the derivatives of the objective function and 

constraints and employ probabilistic transition rules instead of deterministic ones [14]. Nature has always been a 

major source of inspiration to engineers and natural philosophers and many meta-heuristic approaches are 

inspired by solutions that nature herself seems to have chosen for hard problems. The Evolutionary Algorithm 

(EA) proposed by Fogel et al. [15], De Jong [16] and Koza [17], and the Genetic Algorithm (GA) proposed by 

Holland [18] and Goldberg [19] are inspired from the biological evolutionary process. Studies on animal 

behavior led to the method of Tabu Search (TS) presented by Glover [20], Ant Colony Optimization (ACO) 

proposed by Dorigo et al. [21] and Particle Swarm Optimizer (PSO) formulated by Eberhart and Kennedy [22]. 

Also, Simulated Annealing proposed by Kirkpatrick et al. [23], the Big Bang–Big Crunch algorithm (BB–BC) 
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proposed by Erol and Eksin [24] and improved by Kaveh and Talatahari [25], and the Gravitational Search 

Algorithm (GSA) presented by Rashedi et al. [26] are introduced using physical phenomena. The objective of 

this paper is to present a new optimization algorithm based on principles from physics and mechanics, which 

will be called Charged System Search (CSS). We utilize the governing Coulomb law from physics and the 

governing motion from Newtonian mechanics. 

2. Voltage Stability Evaluation 

2.1  Modal analysis for voltage stability evaluation 

Modal analysis is one of the methods for voltage stability enhancement in power systems. In this method, 

voltage stability analysis is done by computing eigen values and right and left eigen vectors of a jacobian 

matrix. It identifies the critical areas of voltage stability and provides information about the best actions to be 

taken for the improvement of system stability enhancements. The linearized steady state system power flow 

equations are given by. 

�∆P
∆Q� = �

Jpθ      Jpv  
Jqθ     JQV      �                            (1) 

Where 

ΔP = Incremental change in bus real power. 

ΔQ = Incremental change in   bus   reactive 

Power injection 

Δθ = incremental change in bus voltage angle. 

ΔV = Incremental change in bus voltage 

Magnitude 

Jpθ , J PV , J Qθ , J QV jacobian matrix are   the   sub-matrixes    of   the System  voltage  stability  is affected  by 

both P and Q. However at each operating point we keep P constant and evaluate voltage stability by considering 

incremental relationship between Q and V. 

To reduce (1), let ΔP = 0 , then. 

∆Q = �JQV − JQθJPθ−1 JPV �∆V = JR∆V      (2) 

∆V = J−1 − ∆Q                                        (3) 
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Where 

JR = �JQV − JQθJPθ−1 JPV�                        (4) 

JR  is called the reduced Jacobian matrix of the system. 

Modes of Voltage instability: 

Voltage Stability characteristics of the system can be identified by computing the eigen values and eigen vectors  

Let 

JR = ξ˄η                                                 (5) 

Where, 

ξ = right eigenvector matrix of JR 

η = left eigenvector matrix of JR 

∧ = diagonal eigenvalue matrix of JR and 

JR−1 = ξ˄−1η                                          (6)                                  

  From (3) and (6), we have 

∆V = ξ˄−1η∆Q                                       (7)                                  

                 or 

∆V = ∑ ξi ηi
λi

I ∆Q                                       (8) 

Where ξi  is the ith  column right eigenvector and  η the ith row left  eigenvector of JR.  

 λi   is the ith eigen value of JR. 

The  ith  modal reactive power variation is, 

∆Qmi = Kiξi                                          (9) 

 where, 

Ki = ∑ ξij2j − 1                                    (10) 
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Where 

ξji is the jth element of ξi 

The corresponding ith modal voltage variation is 

∆Vmi = [1 λi⁄ ]∆Qmi                              (11) 

In (8), let ΔQ = ek   where ek has all its elements zero except the kth one being 1. Then,  

 ∆V =  ∑
ƞ1k   ξ1   

λ1
i                                           (12) 

ƞ1k     k th element of ƞ1      

V –Q sensitivity at bus k  

∂VK
∂QK

= ∑
ƞ1k   ξ1   

λ1
i  = ∑ Pki

λ1
i               (13) 

3. Problem Formulation 

The objectives of the reactive power dispatch problem considered here is to minimize the system real power loss 

and maximize the static voltage stability margins (SVSM).  

3.1 Minimization of Real Power Loss 

It is aimed in this objective that minimizing of the real power loss (Ploss) in transmission lines of a power 

system. This is mathematically stated as follows. 

Ploss = ∑ gk(Vi
2+Vj

2−2Vi  Vj  cos θij )
n

k=1
k=(i,j)

            (14)            

Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are voltage 

magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and bus j. 

3.2 Minimization of Voltage Deviation 

It is aimed in this objective that minimizing of the Deviations in voltage magnitudes (VD) at load buses. This is 

mathematically stated as follows. 

Minimize VD = ∑ |Vk − 1.0|nl
k=1                     (15) 

Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 
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3.3 System Constraints 

In the minimization process of objective functions, some problem constraints which one is equality and others 

are inequality had to be met. Objective functions are subjected to these constraints shown below. 

Load flow equality constraints: 

PGi – PDi − Vi ∑ Vj
nb
j=1

�
Gij cos θij

+Bij sin θij
� = 0, i = 1,2 … . , nb                                                                (16) 

QGi  − QDi  Vi ∑ Vj
nb
j=1

�
Gij cos θij

+Bij sin θij
� = 0, i = 1,2 … . , nb                                                                  (17) 

where, nb is the number of buses, PG and QG are the real and reactive power of the generator, PD and QD are the 

real and reactive load of the generator, and Gij and Bij are the mutual conductance and susceptance between bus i 

and bus j. 

Generator bus voltage (VGi) inequality constraint: 

VGi  
min ≤  VGi ≤ VGi

max , i ∈ ng                          (18) 

Load bus voltage (VLi) inequality constraint: 

VLi 
min ≤  VLi ≤ VLi

max , i ∈ nl                           (19) 

Switchable reactive power compensations (QCi) inequality constraint: 

QCi  
min ≤  QCi ≤ QCi

max , i ∈ nc                          (20) 

Reactive power generation (QGi) inequality constraint: 

QGi  
min ≤  QGi ≤ QGi

max , i ∈ ng                         (21) 

Transformers tap setting (Ti) inequality constraint: 

Ti 
min ≤  Ti ≤ Ti

max , i ∈ nt                                 (22) 

Transmission line flow (SLi) inequality constraint: 

SLi 
min ≤ SLi

max , i ∈ nl                                       (23) 

Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and transformers.  
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4. Charged Search System (CSS) 

In this section, a new efficient optimization algorithm is established utilizing the aforementioned physics laws, 

which is called Charged System Search (CSS). In the CSS, each solution candidate X i containing a number of 

decision variables i.e ( Xi = �xi,j� ) is considered as a charged particle. The charged particle is affected by the 

electrical fields of the other agents. The quantity of the resultant force is determined by using the electrostatics 

laws and the quality of the movement is determined using the Newtonian mechanics laws. It seems that an agent 

with good results must exert a stronger force than the bad ones, so the amount of the charge will be defined 

considering the objective function value, fit (i). In order to introduce CSS, the following rules are developed: 

Rule 1 Many of the natural evolution algorithms maintain a population of solutions which are evolved through 

random alterations and selection [28]–[29]. Similarly, CSS considers a number of Charged Particles (CP). Each 

CP has a magnitude of charge (qi) and as a result creates an electrical field around its space. The magnitude of 

the charge is defined considering the quality of its solution, as follows: 

qi = fit (i)−fitworst
fitbest −fitworst

, i = 1,2, … , N,         (24) 

where fitbest and fitworst are the so far best and the worst fitness of all particles; fit (i) represents the objective 

function value or the fitness of the agent i; and N is the total number of CPs. The separation distance rij between 

two charged particles is defined as follows: 

rij =  
�Xi−Xj�

�
�Xi +Xj�

2 −Xbest �+ε
,                 (25) 

where Xi and Xj are the positions of the i th and j th CPs, Xbest is the position of the best current CP, and ε is a 

small positive number to avoid singularities. 

Rule 2 The initial positions of CPs are determined randomly in the search space 

xi,j
(0) =  xi,min + rand ∙ �xi,max − xi,min �, i = 1,2, . . , n    (26) 

where xi,j
(0) determines the initial value of the i th variable for the j th CP; xi,min  andxi,max  are the minimum and 

the maximum allowable values for the i th variable; rand is a random number in the interval [0,1]; and n is the 

number of variables. The initial velocities of charged particles are zero 

vi,j
(0) = 0 , i = 1,2, . . , n.                                       (27) 

Rule 3 Three conditions could be considered related to the kind of the attractive forces: Any CP can affect 

another one; i.e., a bad CP can affect a good one and vice versa (pij = 1). A CP can attract another if its electric 

charge amount (fitness with revise relation in minimizing problems) is better than other. In other words, a good 

CP attracts a bad CP:  
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pij =  � 1         fit(j) > 𝑓𝑓𝑓𝑓𝑓𝑓(i),
0   else                            

�                           (28) 

All good CPs can attract bad CPs and only some of bad agents attract good agents, considering following 

probability function: 

pij = � 1 fit(i)−fitbest
fit(j)−fit(i)

 > rand˅fit(j) > fit(i)
0 else                                                                       

�    

          (29) 

According to the above conditions, when a good agent attracts a bad one, the exploitation ability for the 

algorithm is provided, and vice versa if a bad CP attracts a good CP, the exploration is provided. When a CP 

moves toward a good agent it improves its performance, and so the self-adaptation principle is guaranteed. 

Moving a good CP toward a bad one may cause losing the previous good solution or at least increasing the 

computational cost to find a good solution. To resolve this problem, a memory which saves the best-so-far 

solution can be considered. Therefore, it seems that the third kind of the above conditions is the best rule 

because of providing strong exploration ability and an efficient exploitation. 

 

 

 

 

 

                        Fig.1 Determining the resultant electrical force acting on a CP 
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Rule 4 The value of the resultant electrical force acting on a CP is 

Fj = qj ∑ �qi
a3 rij ∙ i1 + qi

rij
2 ∙ i2�i,i≠j pij�Xi − Xj�,�

j = 1,2, . . , N                   
i1 = 1, i2 = 0⬄rij < 𝑎𝑎
i1 = 0, i2 = 1⬄rij ≥ a

�      (30) 

            

where Fj is the resultant force acting on the j th CP, as illustrated in Fig. 1. 

In this algorithm, each CP is considered as a charged sphere with radius a, which has a uniform volume charge 

density. In this paper, the magnitude of a is set to unity; however, for more complex examples, the appropriate 

value for a must be defined considering the size of the search space. One can utilize the following equation as a 

general formula: 

 a=0.10хmax��xi,max − xi,min | i = 1,2, . . , n��.    (31) 

According to this rule, in the first iteration where the agents are far from each other the magnitude of the 

resultant force acting on a CP is inversely proportional to the square of the separation between the particles. 

Thus the exploration power in this condition is high because of performing more searches in the early iterations. 

It is necessary to increase the exploitation of the algorithm and to decrease the exploration gradually. After a 

number of searches where CPs are collected in a small space and the separation between the CPs becomes small, 

say 0.1, then the resultant force becomes proportional to the separation distance of the particles instead of being 

inversely proportional to the square of the separation distance. Therefore, the parameter a separates the global 

search phase and the local search phase, i.e., when majority of the agents are collected in a space with radius a, 

the global search is finished and the optimizing process is continued by improving the previous results, and thus 

the local search starts. Besides, using these principles controls the balance between the exploration and the 

exploitation. It should be noted that this rule considers the competition step of the algorithm. Since the resultant 

force is proportional to the magnitude of the charge, a better fitness (great qi) can create a stronger attracting 

force, so the tendency to move toward a good CP becomes more than toward a bad particle. 

Rule 5 The new position and velocity of each CP is 

Xj,new = randj1 ∙ ka ∙
Fj

mj
∙ ∆t2 + randj2 ∙ kv ∙ Vj,old ∙ ∆t + Xj,old ,                           

(32)   

Vj,new =
Xj,new −Xj,old

∆t
,                                                                                                    (33) 

Where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence of the previous 

velocity; and rand j1 and rand j2 are two random numbers uniformly distributed in the range of (0,1). Here, m j 

is the mass of the jth CP which is equal to qj ∙ ∆tis the time step and is set to unity. The effect of the pervious 

velocity and the resultant force acting on a CP can be decreased or increased based on the values of the kv and 
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ka, respectively. Excessive search in the early iterations may improve the exploration ability; however, it must 

be decreased gradually, as described before. Since ka is the parameter related to the attracting forces, selecting a 

large value for this parameter may cause a fast convergence and vice versa a small value can increase the 

computational time. In fact ka t is a control parameter of the exploitation. Therefore, choosing an incremental 

function can improve the performance of the algorithm. Also, the direction of the pervious velocity of a CP is 

not necessarily the same as the resultant force. Thus, it can be concluded that the velocity coefficient kv controls 

the exploration process and therefore a decreasing function can be selected. Thus, kv and ka are defined as, 

kv=0.5(1− iter itermax⁄ ), ka = 0.5(1 + iter itermax⁄ )                                                      (34) 

Where iter is the actual iteration number and itermax is the maximum number of iterations. With this equation, 

kv decreases linearly to zero while ka increases to one when the number of iterations rises. In this way, the 

balance between the exploration and the fast rate of convergence is saved. Considering the values of these 

parameters, Eqs. (35) and (36) can be rewritten as 

Xj,new =

0.5randj1 ∙ (1 + iter itermax⁄ ) ∙ ∑ �qi
a3 rij ∙ i1 + qi

rij
2 ∙ i2�i,i≠j pij�Xi − xj� + 0.5randj2 ∙ (1 + iter itermax⁄ ) ∙ Vj,old +

Xj,old                                                                                                                                   (35)                                     

  Vj,new = Xj,new − Xj,old ,                                                                                      (36) 

Figure 5 illustrates the motion of a CP to its new position using this rule. The rules 5 and 6 provide the 

cooperation step of the CPs, where agents collaborate with each other by information transferring. 

Rule 6 Considering a memory which saves the best CP vectors and their related objective function values can 

improve the algorithm performance without increasing the computational cost. To fulfill this aim, Charged 

Memory (CM) is utilized to save a number of the best so far solutions. In this paper, the size of the CM (i.e. 

CMS) is taken as N/4. Another benefit of the CM consists of utilizing this memory to guide the current CPs. In 

other words, the vectors stored in the CM can attract current CPs according to Eq. (30). Instead, it is assumed 

that the same number of the current worst particles cannot attract the others. 

 

    Fig. 2 The movement of a CP to the new position 
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Rule 7 There are two major problems in relation to many meta-heuristic algorithms; the first problem is the 

balance between exploration and exploitation in the beginning, during, and at the end of the search, and the 

second is how to deal with an agent violating the limits of the variables. The first problem is solved naturally 

through the application of above-stated rules; however, in order to solve the second problem, one of the simplest 

approaches is utilizing the nearest limit values for the violated variable. Alternatively, one can force the 

violating particle to return to its previous position, or one can reduce the maximum value of the velocity to 

allow fewer particles to violate the variable boundaries. Although these approaches are simple, they are not 

sufficiently efficient and may lead to reduce the exploration of the search space. This problem has previously 

been addressed and solved using the harmony search-based handling approach [28, 30]. According to this 

mechanism, any component of the solution vector violating the variable boundaries can be regenerated from the 

CM as 

xi,j = �w. p. CMCR           
w. p. (1 − CMCR)

�                            (37) 

 Subject to  

⇒Select a new value for a variable from CM 

⇒w.p (1-PAR) do nothing  

⇒w.p.PAR choose a neighbouring value  

⇒select a new value  

where “w.p.” is the abbreviation for “with the probability”; xij is the i th component of the CP j ; The CMCR 

(the Charged Memory Considering Rate) varying between 0 and 1 sets the rate of choosing a value in the new 

vector from the historic values stored in the CM, and (1 – CMCR)sets the rate of randomly choosing one value 

from the possible range of values. The pitch adjusting process is performed only after a value is chosen from 

CM. The value (1−PAR) sets the rate of doing nothing, and PAR sets the rate of choosing a value from 

neighbouring the best CP.  

Rule 8 The terminating criterion is one of the following: 

Maximum number of iterations: the optimization process is terminated after a fixed number of iterations, for 

example, 1,000 iterations. Number of iterations without improvement: the optimization process is terminated 

after some fixed number of iterations without any improvement. Minimum objective function error: the 

difference between the values of the best objective function and the global optimum is less than a pre-fixed 

anticipated threshold. Difference between the best and the worst CPs: the optimization process is stopped if the 

difference between the objective values of the best and the worst CPs becomes less than a specified accuracy. 

Maximum distance of CPs: the maximum distance between CPs is less than a pre-fixed value. Now we can 
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establish a new optimization algorithm utilizing the above rules. The following steps summarize the CSS 

algorithm: 

Level 1: Initialization 

Step 1: Initialization. Initialize CSS algorithm parameters; Initialize an array of Charged Particles with random 

positions and their associated velocities (Rules 1 and 2). 

Step 2: CP ranking. Evaluate the values of the fitness function for the CPs, compare with each other and sort 

increasingly. 

Step 3: CM creation. Store CMS number of the first CPs and their related values of the objective function in the 

CM. 

Level 2: Search 

Step 1: Attracting force determination.Determine the probability of moving each CP toward others (Rule 3), and 

calculate the attracting force vector for each CP (Rule 4). 

Step 2: Solution construction. Move each CP to the new position and find the velocities (Rule 5). 

Step 3: CP position correction. If each CP exits from the allowable search space, correct its position using Rule 

7. 

Step 4: CP ranking. Evaluate and compare the values of the objective function for the new CPs, and sort them 

increasingly. 

Step 5: CM updating. If some new CP vectors are better than the worst ones in the CM, include the better 

vectors in the CM and exclude the worst ones from the CM (Rule 6) 

Level 3: Terminating criterion controlling 

Repeat search level steps until a terminating criterion is satisfied (Rule 8). 

5. Simulation Results 

The accuracy of the proposed CSS method is demonstrated by testing it on standard IEEE-30 bus system. The 

IEEE-30 bus system has 6 generator buses, 24 load buses and 41 transmission lines of which four branches are 

(6-9), (6-10) , (4-12) and (28-27) - are with the tap setting transformers. The lower voltage magnitude limits at 

all buses are 0.95 p.u. and the upper limits are 1.1 for all the PV buses and 1.05 p.u. for all the PQ buses and the 

reference bus. The simulation results have been presented in Tables 1, 2, 3 &4. And in the Table 5 shows the 

proposed algorithm powerfully reduces the real power losses when compared to other given algorithms. The 

optimal values of the control variables along with the minimum loss obtained are given in Table 1. 
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Corresponding to this control variable setting, it was found that there are no limit violations in any of the state 

variables.  

TABLE I.  TABLE I. RESULTS OF CSS – ORPD OPTIMAL CONTROL VARIABLES 
 
 

Control variables Variable setting 
V1 

 
V2 

 
V5 

 
V8 

 
V11 

 
V13 

 
T11 

 
T12 

 
T15 

 
T36 

 
Qc10 

 
Qc12 

 
Qc15 

 
Qc17 

 
Qc20 

 
Qc23 

 
Qc24 

 
Qc29 

 
Real power loss 

 
SVSM 

1.042 
 

1.043 
 

1.042 
 

1.031 
 

1.002 
 

1.040 
 

1.03 
 

1.01 
 

1.0 
 

1.0 
 
4 
 
3 
 
3 
 
0 
 
4 
 
4 
 
2 
 
4 
 

4.3058 
 

                 0.2471 

 

ORPD together with voltage stability constraint problem was handled in this case as a multi-objective 

optimization problem where both power loss and maximum voltage stability margin of the system were 

optimized simultaneously. Table 2 indicates the optimal values of these control variables. Also it is found that 

there are no limit violations of the state variables. It indicates the voltage stability index has increased from 

0.2471 to 0.2483, an advance in the system voltage stability. To determine the voltage security of the system, 

contingency analysis was conducted using the control variable setting obtained in case 1 and case 2. The Eigen 

values equivalents to the four critical contingencies are given in Table 3. From this result it is observed that the 

Eigen value has been improved considerably for all contingencies in the second case.  
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TABLE II.  RESULTS OF   CSS -VOLTAGE STABILITY CONTROL REACTIVE POWER DISPATCH OPTIMAL CONTROL VARIABLES 

 
Control 

Variables 
Variable 
Setting 

V1 
 

V2 
 

V5 
 

V8 
 

V11 
 

V13 
 

T11 
 

T12 
 

T15 
 

T36 
 

Qc10 
 

Qc12 
 

Qc15 
 

Qc17 
 

Qc20 
 

Qc23 
 

Qc24 
 

Qc29 
 

Real power 
loss 

 
SVSM 

1.044 
 

1.043 
 

1.042 
 

1.032 
 

1.006 
 

1.033 
 

0.090 
 

0.090 
 

0.090 
 

0.090 
 
3 
 
4 
 
3 
 
3 
 
0 
 
3 
 
4 
 
4 
 

4.9889 
 
 

0.2483 
 

 

 

TABLE III.  VOLTAGE STABILITY UNDER CONTINGENCY STATE 

Sl.No Contigency ORPD 

Setting 

VSCRPD 

Setting 

1 28-27 0.1410 0.1432 

2 4-12 0.1658 0.1663 

3 1-3 0.1774 0.1772 

4 2-4 0.2032 0.2043 
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TABLE IV.  LIMIT VIOLATION CHECKING OF STATE VARIABLES 

State 

variables 

limits 
ORPD VSCRPD 

Lower  upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 
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TABLE V.  COMPARISON OF REAL POWER LOSS 

Method Minimum loss 

Evolutionary 

programming[10] 

5.0159 

Genetic algorithm[11] 4.665 

Real coded GA with Lindex as 

SVSM[12] 

4.568 

 

Real coded genetic 

algorithm[13] 

 

4.5015 

Proposed CSS  method  4.3058 

6. Conclusion 

In this paper a novel approach CSS algorithm used to solve optimal reactive power dispatch problem, 

considering various generator constraints, has been successfully applied. To handle the mixed variables a 

flexible representation scheme was proposed. The performance of the proposed algorithm demonstrated through 

its voltage stability assessment by modal analysis is effective at various instants following system contingencies. 

Also this method has a good performance for voltage stability Enhancement of large, complex power system 

networks. The effectiveness of the proposed method is demonstrated on IEEE 30-bus system. 
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