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Abstract 

Context-awareness is an important topic in the wireless sensor networks research field. Wireless sensor 

networks comprise wirelessly enabled embedded systems for data acquisition and control for a wide array of 

applications. This paper introduces a novel embedded systems firmware model based on a layered model with 

context and cognitive planes. The novel architecture focuses on dynamic adaptability. The context plane 

features a micro-architecture which includes context collectors, context controllers and a context task based 

coordinator. The cognitive plane is responsible for dynamic adaptable logic reconfiguration inspired by fuzzy 

cognitive maps. No previous work has been done on the use of fuzzy cognitive maps for enabling dynamic, 

resource constrained, and firmware adaptability. An industrial application (Novax’s Accessible Pedestrian 

System) and simulations using the Rapita suite of tools are presented for model proof of concept and evaluation. 

Keywords: fuzzy cognitive maps; embedded software architecture; adaptability; context-aware model; wireless 

sensor networks. 

1. Introduction 

A specialized, context-aware, embedded systems software (henceforth referred to as firmware) architecture is 

important to achieve code modularity, maintainability and extensibility.  

 

------------------------------------------------------------------------ 

* Corresponding author 

91 

 

mailto:jaggerna@sfu.ca
mailto:kaminska@sfu.ca


International Journal of Computer (IJC)(2015) Volume 19, No  1, pp 91-113 

 

The motivation for this research is to demonstrate a novel dynamically adaptable context-aware architecture to 

improve the application software's flexibility and responsiveness according to different user requirements or 

varying operational conditions which is specifically designed for low footprint (code-space), single processor, 

potentially energy-aware, solutions typically found in either wireless sensor networks, mature systems, cost-

aware solutions or legacy implementations. This adaptability is similar to modifiable configuration parameters 

but extended to configuration logic and achieved by translating the adaptable code functionality into context-

aware logic maps. Here the context-aware logic maps and their syntax is inspired by fuzzy cognitive maps 

(FCM). Fig. 1 shows the basic components of a FCM concepts (C) and weights connected by causal links (e). 

The adaptability focuses on changing firmware operation by changing the strengths of or rewiring the operation 

of the logic map. When a user (e.g. mobile phone application communicating with a battery operated wearable 

(wristwatch, physiological sensor [1, 2], requires different functionality a different logic map is downloaded. 

The battery usage/energy required for a logic map update is low when compared to upgrading the entire 

firmware [3] (because there are less instructions/bytes to be received and processed) especially for cases where 

the changes are not foundational functionality necessitating a firmware upgrade. And the coding of the logic into 

maps allows for the application to be responsive to end-user incremental changes. 

 

Figure1: Generic fuzzy cognitive map with weights 

1.1. Background 

Embedded systems are dedicated-purpose computing systems as opposed to multi-purpose computing systems 

(personal computers, workstations). Embedded systems are widely used in a variety of but not limited to 

consumer, automotive and industrial applications. Embedded systems interface with their environment using 

sensors and actuators.  Embedded systems are characterized by dedicated functionality in addition to limited 

resources (low processing capabilities, limited I/O (form-factor), restrictions on energy consumption, data 

storage and data processing), performance and efficiency, real-time constraints, interaction with the environment 

and dependability [4]. 

Firmware is embedded systems software. Firmware architecture provides a framework that supports firmware 

modularization [6]. The benefits for firmware modularization are well documented and include software 

reliability, faster development time and debugging, a means to achieve and manage complexity, improved 

testability and portability. Firmware modularity allows for separation of concerns which is a key to context-

aware systems [5]. There is a downside however in that firmware modularization increases overall code size due 

to encapsulation and layers of function calls. Excessive encapsulation could also result in increased code latency 

and problems with scalability. Our model is evaluated for latency in Section 4.1. 
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For this research, we use Dey's [5] definition of context for embedded systems firmware development i.e. 

changeable and characterizing information such as sensor data (IR - infrared, GPS, accelerometer) or profile 

attributes (user, vehicle, device, etc.) or explicitly provided user information.  

Inverardi et al. propose a future for software in adaptability and dependability. They define adaptability as 

system changes according to changes in context and in terms of the four W's - why are there changes, what 

remains unchanged, when do the changes occur and who manages these changes. Three examples are selected 

which demonstrate adaptability through topological changes and changes in interaction behavior - Synthesis 

(automatically building reliable connectors), Graph Grammer (topological evolution) and ArchJava (topological 

and behavior evolution) [7]. Gamez in reference [8] demonstrate adaptability in their work by showing when a 

context change is detected, a plan is selected and system reconfiguration subsequently occurs (e.g. sensor 

deactivation, monitoring frequency reduction or installation of new services). 

Fuzzy cognitive maps (FCM), Fig. 1 and Fig. 11, model variables or concepts that are interconnected by causal 

relationships and are figuratively represented by a signed directed graph with feedback. A causal relationship is 

defined where a relative change in one concept causes a relative change in a corresponding concept. FCMs have 

fuzzy logic and neural network components. The fuzzy logic element specifies degrees of causality and the 

neural networks component describes an artificial neuron (concept) processing where single or multiple input 

are transformed into a corresponding output value [9]. Fuzzy Cognitive Modeling is used for enabling dynamic 

adaptability because it allows for the consideration of a large number of complex inter-relationships in addition 

to being flexible and responsive to factor changes.  FCMs are an effective tool for modeling complex social 

systems (e.g. for decision making) as well as for applications in sciences and engineering. Fuzzy cognitive maps 

have been recently used in modeling lean manufacturing [9], collaborative planning, forecasting and 

replenishment approach [10] affordance based planning [11] and medical decision making [12,13.14]. 

1.2. Previous Works 

Classic firmware architectures are the MVC (Model View Controller) and its variants [15]. In firmware 

development, middleware is an extensively researched area. Recent developments in the field of context-

awareness for middle-ware includes: CASS (Context Aware Substructure) a server based middle-ware used with 

mobile devices, C-CAST a context-awareness system using a consumer-provider broker model, MidSen a multi-

application bridge for wireless sensor networks, WiSeKit enables dynamic behavior in wireless sensor networks 

using adaptation and reconfiguration, COPAL defines a domain specific language (COPAL DSL) for context-

provisioning plans and providing automatic code generation and a macro language (COPAL ML). Additional 

context-aware modeling research includes the use of ContextUML by Prezerakos, auto-generation of context-

aware AmI models by Serral , and the work done by Segarra et al, using multi-level model based on observing, 

deciding, planning and executing [8]. Pantsar-Syvniemi in reference [16] introduce a micro-architecture that 

performs context-monitoring and context reasoning and context adaptation via a semantic database. Gamez in 

reference [8] describe a middleware solution that performs context acquisition, context storage, context analysis 

and predefined plans for adaptability.  
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Our research differs from the previous works because of our focus on an adaptability solution for memory-

constrained, low power, single core embedded processors. The previous works focused on server, desktop 

computer platforms [5] or multi-media, multi-core embedded processors (e.g. mobile phones) [8]. Our model is 

specifically for embedded software (i.e. firmware running on electronic devices) whereas the previous works 

focused either on a semantic database, multi-application bridge, domain specific language or UML language [5, 

8, 11]. Our cognitive engine is based on topological change using FCMs as opposed to topological change using 

petri-nets, graphs or architecture description language presented in Inverardi [7]. 

2. Materials 

This section will describe our micro-architecture components and data-flow as well as a high-level overview of 

applications of our research to three examples. Background theory on FCMs as it relates to the cognitive engine 

is also introduced. 

2.1. Micro Architecture Overview 

Figure. 2 shows the new context layer which lies above the application layer (usually a classic MVC 

architecture standard to many legacy embedded applications). 

 

Figure 2: Multi-layer context-aware model 

2.1.1 Components 

Fig. 3 shows our micro-architecture within the context-aware layer. The components of the micro-architecture 

are context-collectors, context controllers, a context-coordinator engine and a cognitive engine.  

The criteria followed for determining the components in the micro-architecture as well as making the 

architecture adaptable is taken from Parnas research on rules for module decomposition [17] and software 

design principles for ease of expansion and contraction [18]. For our basic framework, Parnas stipulates that 

subsets need to be identified (in our system, contexts) and the idea of information hiding of “secrets” using 

modules interfaces and definitions (context collectors, context controllers).  
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Parnas defines “secrets” as design decisions that are likely to change which are located in specialized 

components (the “on-the-fly” adaptability by expansion and contraction of the cognitive map in the cognitive 

engine). Parnas also identifies the “uses” structure (requires the presence of) which is reflected in the “requires” 

functionality of the cognitive map in our system (“requires” functionality “wires” the cognitive map 

concepts/contexts together to form the map). 

Context Collector - The collectors can either interface directly with the sensor device drivers for reading the 

sensor data or through a hardware abstraction layer.  The context-collectors determine a change in context and 

alert the context coordinator (Fig. 3 and Fig. 4). Context collectors are also responsible for local storage. Storage 

could potentially reduce expensive energy transmission to improve battery life e.g. by limiting the need for real-

time status updates to the server in low battery scenarios. The context collector is separate from the database 

structure (module) of the model where the general purpose variables are stored. 

Context Controller - The context controller is responsible for integrating all the related contexts to produce a 

meaningful control sequence. 

Context Coordinator - The context coordinator engine manages inter-context component and inter-layer 

messaging. The context coordinator is also responsible for scheduling of tasks. 

MVC - The models in Fig. 3 could be physical objects or abstract data structures that are used by the 

applications. The view model could be a line based display, a graphics display, no display but with output to a 

hyper-terminal application. The controllers could be responsible for interfacing with hardware peripherals e.g. 

printers. 

Cognitive Engine - The cognitive engine enables dynamic adaptability and is described in detail in Section 2.3. 

 

Figure 3: Proposed Architecture 
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2.1.2 Dataflow 

Data flow (Fig. 4) occurs via events (e.g. context changes) and queries. Based on sensor data received (e.g. via 

interrupts) a determination is made as to whether a context change has occurred. This context change is stored 

together with other useful environmental variables and the context coordinator engine is notified. At the context 

coordinator engine level a task or control variable related to the context change is activated. Alternatively, an 

event is triggered when a timer expires in the context-engine and queries can be sent to context controllers or 

context-collectors. There are two types of events - implicit and explicit. An implicit event occurs when a 

context-change occurs automatically e.g. a car driving to a new area. An explicit event occurs when a context-

change occurs deliberately e.g. a new user logs on or vehicle attributes are changed or a shift sign-off occurs.  

 

Figure 4: Dataflow sequence diagram for architecture 

2.2. Test Cases 

The research will preliminarily consider the application of the architecture to three test cases 1) transport 

dispatching application, Fig. 5 and Fig. 6 2) home-based health monitoring system, Fig. 7 and Fig. 8 and 3) 

Novax’s Accessible Pedestrian System (APS), Fig. 9. 

2.2.1 Transport Mobile Dispatching 

A dispatching application running on a mobile dispatch terminal (embedded system) found in cabs is used for 

getting customers for taxi-car drivers. Taxi cabs can receive customers via street-hire, auction, reserve, closest 

cab and stand jobs. Taxis are equipped with GPS are capable of determining the zone that a driver is currently 

in. As the car moves from zone to zone it is eligible to bid on jobs from that zone, be it auction jobs (left over 

jobs), reserve jobs (future jobs) or closest cab jobs (current jobs and also dependent on how long the driver has 

been idle), stand jobs (dependent on proximity to the stand). Jobs are filtered based on driver (multi-lingual) and 

vehicle attributes (roof rack, lift equipped, minibus etc.), or driver state (active, suspended). The dispatching 

application architecture and sequence diagram are shown in Figs. 5 and 6. 

96 

 



International Journal of Computer (IJC)(2015) Volume 19, No  1, pp 91-113 

 

Model and Controller - Model and Controller functionality could include interfacing with peripherals (camera, 

debit machine, printer, pager, or modem), system tools models (time, string formatting), and storage models 

(table data, application data, zone boundary data). View - functionality would be window display (primary job 

display as well as secondary status and map display). 

Context Collector - The sensor context is supplied by the GPS receiver. The virtual area context is the GPS 

geographically derived area. The application contexts (driver attributes, vehicle attributes, and status) provide 

software contexts from the server application. Examples of information collected for the status context include 

job id, taxi status, previous job number, GPS (x,y), stand tokens, number passengers, break count. 

Context Controller - The context controller components for the dispatching application are - stands, areas, 

payment, trip, and time. Tasks performed by the area or stand context controllers are determining current area 

(shown in Fig. 6), performing bookin operations (stands and zones), handling operational constraints (has the 

terminal been forced signed off, is there a bid in progress, is there a held auction job/ reserve job, emergency 

state, number of type of zonal jobs (e.g. soon to clear) allowed). 

Context Coordinator engine - Some of the decisions that the context engine perform are the determination of 

frequency of collection, constraints factors affecting collection e.g. - for status update related information, the 

effect of dormancy on status updates, co-ordination with the application layer as well as the contextual elements. 

 

Figure 5: Dispatching application architecture 

 

Figure 6: Dispatching application sequence diagram 
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2.2.2 Home Health Care 

A home health care application is used to monitor the elderly. It may comprise a wearable, wirelessly enabled 

embedded system with sensors which are capable of measuring physiological data. The health-care application 

architecture and sequence diagram are shown in Fig. 7 and Fig. 8.  

Context Collector - The sensor contexts are supplied by the ECG (heart rate context collection), thermistor 

(temperature context collection), accelerometer (activity context collection), IR (position context collection). 

Context Controller -The context controllers are responsible for e.g. generating alarms, logging events.  

 

Figure 7: Dataflow sequence diagram for architecture 

  

Figure 8: Dataflow sequence diagram for architecture 
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2.2.3 Novax Accessible Pedestrian System 

Novax produces accessible pedestrian systems (APS), Fig. 9. A typical scenario is a pedestrian approaches an 

intersection and pushes the APS’ button, the red led goes on and the button plays "wait to cross." The button 

receives the walk signal from the traffic controller and plays "walk sign is on."  The button receives the flashing 

don't walk (or ped clear) signal from the traffic controller and plays an audible countdown (10, 9, 8 down to 1). 

 

Figure 9: APS photo courtesy of Novax Industries Corp. 

Table 1: Command sequence for actuating controllers 

Command Response 

N1 <x> Insert x into log 

N2 Display log in entirety 

N3 Erase log 

N4 

<mask> 

Set specified GPIO on 

N5<mask> Set specified GPIO off 

N6 <x> Turn off led x 

N7 <x> Turn on led x 

N8 <val> Enable vibe to <val> level 

N9 <val> Disable vibe 

N10 <x> Play sound sequence x 

N11 Stop sound sequence 

This aps firmware application has the following components: 

Model - Defines the file manager, timers, configuration utility, logging, manufacturing modes. 

Controller - Hardware abstraction layer for the button, uart, spi, led, flash, power line communications, vibe, 

audio, digital I/O. 
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Context-Collectors – Variables that track for push button state, pedestrian signal state, audio conflict etc. Each 

variable is assigned a unique numeric identifier. 

Context-Controllers - Command sequence for actuating the controllers directly at an application level. Some 

commands are listed in Table 1 above. 

2.3. Enabling Dynamic Adaptability in the Cognitive Plane  

The key feature of the proposed model is to enable firmware adaptability using fuzzy cognitive maps. No 

previous work has been done on the use of FCMs for enabling dynamic, low memory constrained, firmware 

adaptability. 

FCMs enable adaptable firmware logic by adjusting the strengths of links between concepts (e.g. the context-

collector variables change value) or updating the topology of the map by adding, removing concepts (remote 

update via a supervisor or system operator). 

2.3.1 Background Theory – Fuzzy Cognitive Maps 

Fuzzy cognitive maps (FCM), Fig. 1 and Fig. 11, model variables or concepts that are interconnected by causal 

relationships. A causal relationship is defined where a relative change in one concept causes a relative change in 

a corresponding concept. The type of Fuzzy Cognitive Map used in this research is the Kardaras FCM [19] (uses 

linguistic weights in decision analysis). 

2.3.2 Kardaras Fuzzy Cognitive Maps 

In this section the Kardaras FCM functionality is described with respect to assignment of weights, causality and 

decision analysis. Assignment of Weights - In the Kardaras Fuzzy Cognitive Map [19] model 4 weights are used 

- Undefined < Weak < Moderate < Strong 

Causality - There are 4 causality relationships in Kardaras FCMS - affects, requires, multiples and stops. Only 

affects, requires (described below) and stops (implied) are relevant to the proposed research model. In Fig. 10 

Variable V1 affects Variable V2 and Variable V2 requires Variable V1. Generally, if X affects Y then an 

increase/decrease X results in an increase/decrease Y. If X requires Y then increase/decrease X does not result 

in an increase/decrease Y AND an increase/decrease Y required for an increase/decrease X. 

 

Figure 10: Affects and requires causality 

Decision Analysis - In the Kardaras model, decision analysis (Equations 1-10) occurs by firstly identifying the 

causal path I, followed by determining the polarity of the path, the degree of belief and the most believed effect. 

The polarity of the path S is (+) if the number of negative polarity relationships is even or zero.  
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The degree of belief of the path φ (phi) is determined by minimum of the fuzzy linguistic weights along the 

path. The most believed effect ∆ (delta) is path which yields the maximum degree of belief. 

 

Figure 11: Generic fuzzy cognitive map 

Using the example presented in Fig. 11 we can identify the different causal paths to get to C5 - I1, I2, I3. 

Equations 1-10 also show the results of evaluating polarity S, degree of belief φ and most believed effect ∆ on 

I1, I2, I3. 

I1 = (C1)  (1) 

I2 = (C2)  (2) 

I3 = (C4, C3)  (3)  

S1 = {strong +} = +  (4) 

S2 = {weak -} = -  (5) 

S3 = {medium -, strong -} = +  (6) 

φ1 = strong  (7)  

φ2 = weak  (8) 

φ3 = medium  (9) 

∆  = I1  (10) 

2.3.3 Application to Research 

In our research we consider a binary FCM with the weights of 0 and 1 instead of weak, medium and strong. φ 

reduces to the logical AND operation so min (A, B, C) translates to (A AND B AND C). Likewise ∆ reduces to 

the logical OR operation so max (A, B, C) translates to (A OR B OR C). 

For logic map evaluation purposes, φ and ∆ can be used to evaluate multiple variable if/else/else if statements.  
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Therefore:  

if (A AND B) {do x} 

else if (A AND B’) {do y} 

else if (A’ AND B) {do z} 

can be expressed as 

max (min (A,B), min(A,B’), min(A’B)) 

or 

∆(φ1, φ2, φ3) 

In this form, the basic evaluation building block of our logic map is realized. The format of our logic map is 

shown in Table 2 below. We additionally introduce the concepts of: 

Complement – A variable complement is achieved by using the negative value of the variable i.e. x’ or (NOT x) 

is expressed numerically as –x. 

Latched – Once a path’s φ has been evaluated to 1, 1 is stored in the Latch field of the FCM. Henceforth, this 

path is always evaluated as having a φ as 1 regardless of the state of the input variables. Regular operation is 

momentary operation where the path’s  φ reflects the real-time evaluation of the input variables. 

Timers – If there are two APS buttons working in tandem (typical intersection configuration) it may be required 

to evaluate the respective APS cognitive engine’s logic simultaneously or on odd rotation. This odd rotation 

would be achieved by setting the value of the timer field. E.g. if the timer field for APS y is set to 1, the 

cognitive engine logic would be evaluated on (clock_ticks mod 2) == 1, if the timer field for APS z is set to 0, 

the cognitive engine logic would be evaluated on (clock_ticks mod 2) == 0. A real-time example would be to 

have APS y play one sound and APS z play the subsequent sound e.g. APS y plays 1,3,5,7 of the audible count-

down and APS z plays 2,4,6,8 of the audible countdown. 

Table 2: Logic Map Fields 

Field Id Data 

1 Coverage map line number 

2 Number of variable to be evaluated 

3-4 Unique variable id 

5 Timer 

6 Momentary/Latch 

7 Calculated phi for this path 

8 Determined latch 

9-16 Context controller command sequence 
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3. Method 

This section describes the implementation and latency evaluation procedure of a simplified subset of the 

dispatching application (Section 2.2.1) and the cognitive engine for the APS system (Section 2.2.3).  

3.1. Dispatching Application and Latency 

A simplified subset of the dispatching application outlined in Section 2.2.1 and Figs. 5 and 6 was profiled. The 

details (procedure calls, messaging) are described in Section 4.2. This subset was used to evaluate the latency 

introduced by the extra layers of the context-collectors/context-coordinators/context-controllers in the new 

architecture and compared against a standard MVC architecture implementation. The code was written in C and 

preliminarily verified on an x86 (DOS) platform.  

The source code is available upon request. The scenario profiled was the case where gps context data is used to 

evaluate the zone the vehicle is currently in. The sequence diagram for this test case in the new architecture is 

shown in Fig. 6 and the sequence diagram for older MVC architecture is shown in Fig. 17. The system model in 

the older architecture (Fig. 17) is replaced by the context-collector, context-coordinator and context controller 

models (Fig. 6) in the new architecture. 

There are several state-of the art tools available for latency model evaluation. The one chosen for this project 

was Rapita RVS (Rapid Verification Suite) [22].   

Performance analysis of this proposed research model was confined to source code simulations as opposed on-

target verification.  On target timing would be the same as the simulation because there was no operating system 

or multi-threaded application.  Rapita's Rapitime works by instrumenting the source code during the 

preprocessor build stage in order to enable execution of performance analysis and generate a report on the 

subsequent trace data (Fig. 18, Fig. 19).  

The types of performance analysis undertaken by Rapitime include: 

• Worse Case Execution Time (W-ET) 

• Maximum Execution Time (M-ET) 

• High Water Mark Execution Time (H-ET) 

• Execution Time Profiles 

The Execution Time profiles are further divided into Self Execution Time (SelfET), Sub Routine Execution 

Time (SubET) and Overall Execution Time (OverET). Additional analysis is provided with respect to Test 

coverage, Loop bounds, Call Trees and Context Information. Using the Rapita tool, the code analysis results 

were simulated using an ARM processor engine. 
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Figure 16: The RVS process, Rapita© 

 

Figure 17: Standard MVC architecture 

3.2. APS Cognitive Engine 

The APS cognitive engine was written in C and preliminarily verified on Microchip ™ PIC 18F series (MCU 8-

bit, 128 KB Flash) embedded processor. The φ and ∆ state diagram are shown in Figs. 12 and 13 respectively. 

The pseudo code for the cognitive engine is shown in Fig. 14. The source code for the cognitive engine (only) is 

available upon request. 
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Figure 12: FCM φ state-diagram 

 

Figure 13: FCM ∆ state-diagram 
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Figure 14: Pseudo code for cognitive engine 

The test scenario involves defining different logic for different values of audio conflict and stuck button 

occurring together. Table 3 describes the functionality we want to implement, where depending on the value of 

the context-collector variables either the led is turned off, or the vibe is turned off or an error condition is 

logged. An audio conflict is a sound playing in the wrong pedestrian state e.g. a walk sound playing during the 

don’t walk pedestrian state. 

We define the following context collectors - BAC is button audio conflict where 1 is audio conflict detected and 

0 is no audio conflict detected. BS is stuck button where 1 is stuck button detected and 0 is no stuck button 

detected. The context collectors are program variables that have unique identifiers, BAC id is 1 and BS id is 2. 

Table 3: Logic Map Setup 

BAC BS Action Logic Coverage Map Entry 

1 1 Turn off led 1 2 1 2 0 0 0 0 'N' '6' '0' 0 0 0 0 0 

0 1 Turn off vibe 3 2 -1 2 0 0 0 0 'N' '9' 0 0 0 0 0 0 

1 0 Log error 9 2 2 1 -2 0 0 0 0 'N' '1' ' ' 'e' 'r' 'r' ' ' '9' 

In order to rapidly prototype the proof of concept, simulated commands for updating the coverage map and 

manually overwriting the value of the context collectors via a Tera-term terminal utility were used. (This is 

instead of incorporating the coverage map logic download into the Novax APS configuration utility which is 

generally to change user parameters e.g. sounds, volume levels). The context coordinator was configured to run 

the cognitive engine once instead of continuously on a periodic timer. The input command sequence is shown in 

Table 4 and the results are shown in Fig. 15 

Loop as per timer defined in cognitive map 

 For each line in the cognitive map 

     Evaluate phi for each line 

     Store phi in cognitive map 

     Store latch if specified by coverage map 

 

 For each line in the cognitive map 

     Determine delta 

     If momentary (as defined by coverage map) 

      Execute first delta 

      Break 

     If latched (as defined by coverage map) 

      Execute all latched values for valid delta 
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Table 4: Input command sequence for testing cognitive engine 

Input 

Command 

Sequence 

Expected Result 

V0 000 Initialize all context collector variables to zero 

V1 Load logic coverage map line 1 

V2 Load logic coverage map line 2 

V3 Load logic coverage map line 3 

V0 111 Force values BAC=1, BS=1 to execute V1 context controller commands 

V0 101, N3, 

N2 

Force values BAC=0, BS=1 to execute V2 context controller commands,  

delete, display log 

V0 110, N2 Force values BAC=1, BS=0 to execute V3 context controller commands, 

display log 

4. Results 

In this section the latency results are compared for our architecture versus the standard MVC architecture. Also 

the results of the APS cognitive engine operation are presented. 

4.1. Latency Results 

Figures. 18 and 19 show the key routines associated with the new architecture coord_main call tree and the old 

architecture sys_main call tree. The call tree lists the number of functions defined as well as the order in which 

they are called (which gives insight into the messaging sequence (shown in Figs. 6 and 17.)) The new 

architecture has 9 functions and the old architecture has 5 functions. Fig. 18 also shows a detailed listing of the 

latencies in execution cycles.  In the new architecture the context coordinator (coord_main) queries the context 

collector (coll_context_change) for gps data (gps_get_serial_data) from the gps driver (gps_driver). The 

context-coordinator then passes this data (coord_handle_communication) to the zone context controller which 

processes it and then notifies (zone_handle_communication) the context coordinator of the zone. The context 

coordinator then notifies (coord_handle_communication) the task manager of the zone information which passes 

the information (tsk_handle_communication) to the windows display controller (wnd_update).  In the old 

architecture sys_main is responsible for querying the gps (gps_get_serial_data, gps_driver) and determining the 

zone, after which the task manager is notified ((tsk_handle_communication)) which forwards the information 

onto the windows display (wnd_update). From the simulation it was shown that the benchmark statistics for 

Overall Execution Times are the same for the new and old architectures, i.e. Min OverET, Average OverET, 

High Water OverET, Max OverET, Worse Case OverET are identical. For latency analysis the Worse Case 

Execution Times are used. 

Overall Latency - In this research overall latency is defined as the sum of functional latency, abstraction latency 

and messaging latency. The overall latency in the new architecture is larger.  
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coord_main requires an overall execution time (OverET) of 8216 execution cycles and sys_main has a 4579 

OverET. The increased latency is because of additional overhead in contextual processing. 

Functional Latency - The core logic functionality latency is assumed to be the same for both the new and old 

architectures as the core logic is only organized differently.  

Abstraction Latency - Overall the abstraction latency is larger in the new model. From Fig. 18 the new model 

has the additional coll_context_change routine with 1757 SelfET, in addition to the routines shared with the old 

architecture gps_get_serial_data, gps_driver, and wnd_update. 

Messaging Latency - The messaging latency is larger in the new model because there are more components and 

there is communication between the components and between the context layer and the application layer. From 

Fig. 18 the new model has the additional coord_handle_communication 2436 SelfET, 

zone_handle_communication (not profiled) and send_inter_model_message 1299 SelfET. The routine shared 

with the old architecture is tsk_handle_communication 1155 SelfET.  

 

Figure 18: Rapita simulation results 
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Figure 19: Rapita worse case execution profile 

4.2. Cognitive Engine Result 

The results in Fig. 15 show the correct operation of cognitive engine for interpreting and executing the logic 

map. As per Table 4, rows 1-7 were entered sequentially at Terra-term and the results displayed. The code is 

written such that the command currently being executed is also displayed to the terminal e.g. N6 is shown on the 

screen when the led is turned off, N9 appears when the vibe is turned off. Observing the APS hardware shows 

corresponding physical outputs also being actuated. When the contents of the BAC and BS variables are updated 

or the logic map is updated a confirmation of the contents is also printed to the screen. Before [V0 110] is 

evaluated the log is deleted and then displayed to verify 0 events logged. After [V0 110] is executed the log 

contents show error code 9 registered. 

 

Figure 15: Results displayed on terminal program (Tera-term 

>V0 000 
VAR = 0 0 0 
> V1 
1 = 1 2 1 2 0 0 0 0 86 122 48 0 0 0 0 0 
> V2 
2 = 2 2 1 -2 0 0 0 0 76 109 32 101 114 114 32 57 
> V3 
3 = 3 2 -1 2 0 0 0 0 86 118 0 0 0 0 0 0 
> V0 111 
VAR = 1 1 1 
> N6 
> V0 101 
VAR = 1 0 1 
> N9 
Vibe off 
> N3 
> N2 
0,*,01/01/01,00:02:31,,Log started,3 
0 events 
> V0 110 
VAR = 1 1 0 
> N1 err 9 
> N2 
0,*,01/01/01,00:02:31,,Log started,3 
0,*,01/01/01,00:02:42,a,*** Marker ***,9 
1 events 
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5. Discussion 

In this section the new model will be evaluated for code size (footprint), latency and code complexity as well as 

a discussion on the advantages and disadvantages of our model, future work and concluding remarks. 

5.1. Code Size 

The cognitive engine functionality is designed to be used with micro-processors with low memory requirements. 

Our Novax APS test-bed has 128KB flash memory. The size taken up by the cognitive engine is 138 bytes, φ 

function is 246 bytes and ∆ function is 76 bytes. The code real-estate used to achieve dynamic adaptability is 

very small. 

5.2. Code Complexity 

The cognitive engine can be evaluated for code complexity using the McCabe Cyclomatic Complexity Metric. 

This metric measures complexity with respect to the number of linearly independent paths in the source listing. 

Dynamic allocation of the logic maps reduces the number of hard-coded paths. Only the logic that is needed is 

built into the map. There is no catch-all functionality which would significantly increase the number of linearly 

independent paths and consequently increase code complexity [21]. The use of FCM reduces the overall code 

complexity. 

5.3. Advantages and Disadvantages 

Based on the above findings, the advantages of our system include the light-weight FCM design characterized 

by low code space and reduced complexity. None of the previous works from Section 1.2 were developed to 

operate under such constrains. Our design can be scalable limited to only the memory space available on the 

processor and the number of context controllers and context collectors defined. The proof of concept introduced 

limitations on logic map size only for rapid prototyping purposes. Our logic map design allows for more free-

form changes with greater control over the device and it is not limited to e.g. specific predefined plans as used 

by Gamez [5]. The disadvantages of our research include limitations on the complexity of the logic map 

operator feature set e.g. it currently cannot support sophisticated machine learning algorithms or advanced 

mathematical operations. Another drawback is the end user needing application specific knowledge e.g. the 

context collector variables unique identifier numbers. This direct access to program variables may also pose 

security issues. The logic map  design is based on the use of cyclic executive timing (or time slices) and not for 

use with a real-time operating system as there is no provision for mutexes to mitigate deadlocks or race-

conditions.The increased architecture latency is not significant enough to be prohibitive to the solution’s 

adoption. 

6. Conclusion 

The purpose of the research was to develop a context-aware embedded firmware model for dynamic 

adaptability.  
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Simple well organized modularized components in a context-aware layer which resides above the application 

layer accomplished this. Dynamic adaptability was achieved using Fuzzy Cognitive Maps in order to provide 

user configurable logic for a flexible and enhanced application operation. The proposed research model was 

shown to be suitable for use with resource constrained embedded processors found in either wireless sensor 

networks or mature or legacy or cost-aware applications with single core processors. 

7. Recommendations 

While our research was developed for and is recommended for use in resource constrained embedded systems, 

because of its light-weight design it can also be used with more complex multi-core, multi-media, embedded 

processors or desktop or sever solutions. Our design, where the context-aware functionality is layered above a 

standard MVC architecture, easily extends existing solutions built on a standard MVC architecture. The FCM 

cognitive engine can be used to change user functionality depending on the customer needs, time of day, or 

special occasion (e.g. in the APS case, heavier pedestrian traffic flow during public festivals requiring one-of, 

infrequent operational change). 

Our recommendations for further research includes the development of a formal SDK (system development kit) 

for the context-aware adaptable architecture similar to Dey’s tool-kit [5], expanding the cognitive logic map to 

be more that 16 characters per line by using variable length fields, exploring multi-line context controllers, and 

investigating compression techniques for context-controller command sequences, incorporating a checksum (for 

wireless download), providing an expanded instruction set to augment our phi, delta, latch, momentary 

complement and timer functionality (potentially based on research into the current range of FCM operators) and 

expanding from a binary to ternary or n-ary FCM. In our example the maps were stored in RAM variable space 

but they can also be stored in external, peripheral flash. 
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