

18

International Journal of Computer (IJC)
ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

Design of an ASIP Processor for Mathematic Functions

Mona Moradi*

Young Researcher and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Tehran, Postal code:

3973188981, Iran

Email: mo.moradi@riau.ac.ir

Abstract

This paper presents new architecture for some instructions of Matlab Mathematic toolbar related to matrix such

as Sort, Find max, Sind min, Sind size, Isempty, Isrow, Iscolumn, Isvector, Isscalar, Isfinite, Ismatrix, Isarray, ,

Isequal, Islogical, Findlength, NDims, Nheight, and member of array operations such as addition, subtraction,

multiplication based on Application Specific Instruction Set(ASIP). These instructions can be considered as a

part of ASIP processor for mathematics functions of Matlab software. Designing process for mentioned

instructions is explained comprehensively. The basic structure is developed in order to reduce the required clock

cycles for the mentioned instructions. The complete instruction set for each function is described in Register

Transform Language.

Keywords: Matlab mathematics functions; ASIP; RTL; CPU; Register and ALU Configuration.

1. Introduction

Application Specific Instruction Set Processors (ASIPs) are the alternative programmable platforms comparing

with conventional Application Specific Integrated Circuits (ASICs) [1]. ASIP makes compromise between

ASICs and (Digital Signal Processing) DSPs. ASICs are very high-speed, and they need large consuming area

and long time to reach the market; however DSPs utilize less area and are slower than ASICs. Meanwhile,

ASIPs benefit from both advantages of ASICs and DSPs; it is faster than DSPs and uses less area than ASICs,

so it can make sense of balance between costs And speed [2]. One of the ASIP remarkable features comparing

with general purpose processor is its programmability, since it has its own specific instruction sets to execute a

particular task, faster and reduce the programmer’s mistakes [2, 3]. These features empower the software

developers with more flexibility, easier designing and debugging of processes. In addition, ASIPs divides the

entire task into both hardware and software aspects as an alternative of one side being principal [2]. Respecting

these facts it can be concluded, ASIPs have the advantage of both programmability and efficiency at the same

time.

* Corresponding author.

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

19

Matrix mathematical functions of Matlab software play important role in arithmetic operations and are utilized

in many applications, thus designing an ASIP which is specified for these operations can reduce the delay time

and power significantly.

In this paper, a new ASIP-based processor for some mathematics functions of Matlab package is proposed. The

given architecture is designed to support both general purpose and mentioned instructions. Two structures called

RC1 (register configuration), and RC2 are presented for each instruction. RC2 is the main contribution in this

paper which benefits from low hardware complexity and less clock cycles.

The rest of the paper is organized as follows: Section 2 consists of a brief summary of each instruction

functionality. The proposed register configurations and architecture are presented in section 3. Finally, section 4

concludes the paper.

2. Instructions Functionality

Mathematical operations for arrays and matrixes in Matlab software are essential functions for computations;

hence considering ASIP advantages, designing an ASIP-based processor for them can present great advances in

reducing computing delay time in variety applications related to computation such as genetic algorithm, weather

forecasting, defending simulations and so on. For the first step the following instructions have been

implemented. The complete instruction set is listed in Appendix.

Sort Is-Finite

Fmax Is-Matrix

Fmin IS-Array

Size Is-equal

Is-Empty Is-logical

Is-Row Length

Is-Column Ndim

Is-Vector Nheight

Is-Scalar Is-Finite

Members additions Members subtraction

Members multiply

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

20

Figure 1: Register and ALSU configuration (RC2)

The selected architecture is based on what M. Mano has presented in [4, 5] which is called RC1, howeve it

utilizes more (temporary registers) TR than conventional Mano architecture.

 For implantation of RC2 the differences are the existence of more registers such as two (memory address

register) MAR registers and one register bank which has 8 extra temporary registers ,and the existence of 7 bit

sequence counter in Control Unit In order to generate 128 timing signals and also 7 extra flags(figure 1,2).

 The comprehensive instruction set for each function is described in Register Transform Language (RTL) based

on each register configuration, the required clock cycles is indicated in table.1.

As it is illustrated numbers of clock cycles have reduced due to registers configurations and register transfer

optimizations in each clock cycle.

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

21

Figure 2: control unit configuration of rc2

Table 1: comparison result of RC1

Specific instructions # clock cycle in RG1 # clock cycle in RG2
Sort 27

Fmax 29
Fmin 31
Size 30

Is-Empty 9
Is-Row 36
Is-Column 36
Is-Vector 40
Is-Scalar 39
Is-Finite 20
Is-Matrix 40
IS-Array 38
Is-equal 48
Is-logical 53
Length 47
Ndim 45
Nheight 40
Members additions 53

3. Conclusion

In this paper a new ASIP processor has been presented for some Mathematical operations in Matlab software.

The main goal of the ASIP design has been to provide the required programmability, flexibility and speed for

specific mentioned instructions. The instruction set consists of general purpose instructions together with

eighteen specific instructions. Designing steps for all main components within the processor core have been

explained. The first structure (RC1) has been modified by adding extra registers, flags, and CU modifications to

boost the power of process. The execution of the each specific instruction, required clock cycles considering the

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

22

final structure illustrated in table1.

The presented architecture regarding to ASIP pros benefits from low hardware complexity and less clock cycles.

References

[1] K. Keutzer, S. Malik, and A.R. Newton, “From ASIC to ASIP: the next design discontinuity”, In

Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and

Processors, pp. 84-90, 2002.

[2]. Reza Faghih Mirzaee, Mohammad Eshghi “Design of an ASIP IDEA Crypto Processor”, Networked

Embedded Systems for Enterprise Applications (NESEA), 2011 IEEE 2nd International Conference on

[3]. Yavar Safaei Mehrabani, Mohammad Eshghi “Desing of an ASIP processor for MD5 hash algorithm”

20th Telecommunications forum TELFOR 2012 Serbia, Belgrade, November 20-22, 2012.

 [4]. M.M. Mano, Computer System Architecture, 3rd Edition, 1992.

Appendix (Instruction Set)

Di Fi Instruction Name Description Ins. Reference Opcode

D0 F0 RCV Receive ACL<—INPR I/O 000000

D0 F1 SND SEND OUTR<—ACL I/O 000001

D0 F2 SKI Skip if FGI FGI:PC<—PC+1 I/O 000010

D0 F3 SKO Skip if FGO FGO:PC<—PC+1 I/O 000011

D0 F4 ION IEN ON IEN<—1 I/O 000100

D0 F5 IOF IEN Off IEN<—0 I/O 000101

D0 F6 CLA Clear Accumulator ACL<—0 Register 000110

D0 F7 CAF Clear Arithmetic Flags S,Z,O,C<—0 Register 000111

D0 F8 CMA Complement Accumulator AC<—¬AC Register 001000

D0 F9 CMC Complement Carry Flag

Register

C <—¬C Register 001001

D0 F10 INC Increment Accumulator AC<—AC+1 Register 001010

D0 F11 DEC De Increment Accumulator AC<—AC-1 Register 001011

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

23

D0 F12 SHL Shift Left Accumulator AC<—SHL(ACL) Register 001100

D0 F13 SHR Shift Right Accumulator AC<—SHR(ACL) Register 001101

D0 F14 ROL Rotate Left Accumulator AC<—ROL(ACL) Register 001110

D0 F15 ROR Rotate Right Accumulator AC<—ROR(ACL) Register 001111

D0 F16 SNA Skip if Negative Accumulator S:PC-PC+1 Register 010000

D0 F17 SNA Skip if Zero Accumulator Z:PC<—PC+1 Register 010001

D0 F18 SEA Skip if Even Accumulator E:PC<—PC+1 Register 010010

D0 F19 SZC Skip if Zero Carry flag ¬C:PC<—PC+1 Register 010011

D0 F20 CME Complement E E<—¬E Register 001100

D0 F21 CLE Clear E E<—0 Register 001101

D0 F22 MOVDA Move DR to AC AC<—DR Register 001110

D0 F22 HLT Hult SC<—Disable Register 001111

D1 F0 QLD Quick Load Accumulator ACL<—Data Quick Memory 000000

D1 F1 QCM Quick Complement Data<—¬Data Quick Memory 000001

D1 F2 QAN Quick And Data<—Data^ACL Memory 000010

D1 F3 QOR Quick OR Data<—Data ˅ ACL Memory 000011

D1 F4 QNA Quick NAND Data<—¬(Data ^ ACL) Memory 000100

D1 F5 QNO Quick NOR Data<— ¬(Data ˅ ACL) Memory 000101

D1 F6 QXR Quick XOR Data<—Data ⊕ACL Memory 000110

D1 F7 QXN Quick XNOR Data<— ¬(Data ⊕ ACL) Memory 000111

D1 F8 QAD Quick Addition Data<—Data +ACL Memory 001000

D1 F9 QSB Quick Subtraction Data<—Data -ACL Memory 001001

D1 F10 QSB Quick Multiplication Data<—Data ×ACL Memory 001010

D2 | D3 F0 COM Complement ACL<—¬M[AR] Memory 000000

D2 | D3 F1 AND ADD ACL<—M[AR] ^ACL Memory 000001

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

24

D2 | D3 F2 OR OR ACL<—M[AR] ˅ ACL Memory 000010

D2 | D3 F3 NAND NAND ACL<—¬(M[AR] ^ACL) Memory 000011

D2 | D3 F4 NOR NOR ACL<—¬(M[AR] ˅ACL) Memory 000100

D2 | D3 F5 XOR XOR ACL<—M[AR] ⊕ACL Memory 000101

D2 | D3 F6 XNOR XNOR ACL<—¬(M[AR]

⊕ACL)

Memory 000110

D2 | D3 F7 ADD Addition ACL<—M[AR] +ACL Memory 000111

D2 | D3 F8 SUB Subtraction ACL<—M[AR] -ACL Memory 001000

D2 | D3 F9 MUL Multiplication ACL<—M[AR] ×ACL Memory 001001

D2 | D3 F10 LDA Load Accumulator ACL<—M[AR] Memory 001010

D2 | D3 F11 STA Store Accumulator M[AR] <—ACL Memory 001011

D2 | D3 F12 JMP Jump PC<—AR Memory 001100

D2 | D3 F13 JSR Jump & Save Return Address M[AR] <— PC , PC<—

AR

Memory 001101

D2 | D3 F14 DSZ Decrement and Skip if Zero ACL/M[AR] -1 , Z:PC<—

PC+1

Memory 001111

D2 | D3 F15 SRT Sort Sorting Specific / Memory 010000

D2 | D3 F16 FMAX Fmax Finding Maximum Specific / Memory 010001

D2 | D3 F17 FMIN Fmin Finding Minimum Specific / Memory 010010

D2 | D3 F18 SIZE Size Finding Size Specific / Memory 010011

D2 | D3 F19 ISEMP Is-Empty Finding being empty Specific / Memory 010100

D2 | D3 F20 ISSCAL Is-Scalar Finding being scalar Specific / Memory 010101

D2 | D3 F21 ISFIN Is-Finite Finding being finite Specific / Memory 010110

D2 | D3 F22 ISEQ Is-equal Finding all members are

equal

Specific / Memory 010111

D2 | D3 F23 ISLOG Is-logical Finding all members are Specific / Memory 011000

International Journal of Computer (IJC) (2017) Volume 25, No 1, pp 18-25

25

logical

D2 | D3 F24 LNG Length Finding length Specific / Memory 011001

D2 | D3 F25 NDIM Ndim Finding Number of

Dimension

Specific / Memory 011010

D2 | D3 F26 MEMADD Members additions Specific / Memory 011011

D2 | D3 F27 MEMSUB Members subtraction Specific / Memory 011100

D2 | D3 F28 MEMMUL Members multiply Specific / Memory 011101

	References

