Optimizing Energy Efficiency on Task Allocation for Cyber Foraging in a Transient Mobile Cloud System
Keywords:
Transient mobile cloud, Multi-hop mesh network, Energy-efficient task allocation, Kuhn-Munkres algorithm, Mobile agent-based frameworkAbstract
In this research, we address the essential problem of achieving energy-efficient task allocation, which is a vital building block of cyber foraging on a transient mobile cloud. The goal is to minimize the total energy consumption for collaborative task executions among mobile devices in a multi-hop mesh network constructed on a mobile agent-based framework. Accordingly, we propose an energy-efficient task allocation problem formulation that takes into account the required restrictions. Next, we develop an optimal task allocation solution based on the modification of the Kuhn-Munkres algorithm by leveraging on the structural properties of the problem. We further evaluate the effectiveness of the suggested task allocation scheme through numerical study on a simulated system. The simulation reveals a performance gain on energy consumption reduction over other widely used task assignment algorithms.
References
W. Xu, "Huawei predicts 100 Billion internet connections globally by 2025" IndoAsian News Service, Aug. 19, 2022.
S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1-6.
B. Zhou and R. Buyya, "Augmentation Techniques for Mobile Cloud Computing: A Taxonomy, Survey, and Future Directions", ACM Comput. Surv., vol. 51, no. 1, Art. 13, Jan. 2018, 38 pages.
A. Sciarrone, I. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context awareness over transient clouds" in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2015, pp. 1-5.
M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds", Ann. Telecommun, vol. 72, no. 3-4, pp. 251-261, Jul. 2017.
B. Hu, X. Yang, and M. Zhao, "Online energy-efficient scheduling of DAG tasks on heterogeneous embedded platforms", J. Syst. Archit , vol. 140, p. 102894, 2023.
M.W. Tian, S.R. Yan, W. Guo, A. Mohammadzadeh, and E. Ghaderpour, "A New Task Scheduling Approach for Energy Conservation in Internet of Things", Energies , vol. 16, no. 5, p. 2394, 2023.
S. Kadry, K. Abdulkareem, A. Lakhan, M. Mohammed, and A. Rashid, "Deadline Aware and Energy-Efficient Scheduling Algorithm for Fine-Grained Tasks in Mobile Edge Computing", Int. J. Web Grid Serv, vol. 18, no. 1, pp. 1-18, 2022.
M. Mscs, "An efficient dynamic decision-based task optimization and scheduling approach for microservice-based cost management in mobile cloud computing applications", Pervasive Mobile Computing, vol. 92, 2023.
A. A. Amer, I. E. Talkhan, R. Ahmed, and others, "An Optimized Collaborative Scheduling Algorithm for Prioritized Tasks with Shared Resources in Mobile-Edge and Cloud Computing Systems", Mobile Netw. Appl , vol. 27, pp. 1444–1460, 2022, doi: 10.1007/s11036-022-01974-y.
C. Jin, J. Xu, Y. Han, J. Hu, Y. Chen, and J. Huang, "Efficient Delay-Aware Task Scheduling for IoT Devices in Mobile Cloud Computing", Mobile Inf. Syst , vol. 2022, Art. 1849877, 10 pages, 2022.
R. Alakbarov, "An Optimization Model for Task Scheduling in Mobile Cloud Computing", IJCAC, vol. 12, no. 1, pp. 1-17, 2022.
J. Guo, Y. Liu, B. Yang, B. Xiao, and Z. Li, "Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing", IEEE Trans. Mobile Comput , vol. 18, no. 2, pp. 319-333, Feb. 2019.
Z. A. Jaaz, S. A. Abdulrahman, and H. M. Mushgil, "A dynamic task scheduling model for mobile cloud computing", in Proc. 9th Int. Conf. Electr. Eng., Comput. Sci. Informat. (EECSI), Jakarta, Indonesia, 2022, pp. 96-100.
P. Singh, P. Singh, S. Rajpoot, and D. P. Singh, "Study and Analysis of Offloading in Mobile Cloud Computing", in Proc. Int. Conf. Technol. Advancements Innovations (ICTAI), Tashkent, Uzbekistan, 2021, pp. 280-284.
X. Liu, J. Liu, and H. Wu, "Energy-Efficient Task Allocation of Heterogeneous Resources in Mobile Edge Computing", IEEE Access, vol. 9, pp. 119700-119711, 2021.
E. Soares, P. Brandão, R. Prior, and A. Aguiar, "Experimentation with MANETs of Smartphones", arXiv:1702.04249v1 [cs.NI], Feb. 2017.
I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, "Mobile ad hoc cloud: A survey", Wireless Commun. Mobile Comput , vol. 17, pp. 1607-1625, 2017.
S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video Surveillance System", J. Comput. Sci. Tech. Rep , vol. 6, 2017.
M. Guirguis et al., "Assignment and collaborative execution of tasks on transient clouds", Ann. Télécommun, vol. 73, no. 3-4, pp. 251-261, 2018.
I. Bisio, F. Lavagetto, A. Sciarrone, T. Penner, and M. Guirguis, "Context-awareness over transient cloud in D2D networks: energy performance analysis and evaluation", Trans. Emerg. Telecommun. Technol , vol. 28, no. 2, 2017.
A. Sciarrone, I. Bisio, F. Lavagetto, T. Penner, and M. Guirguis, "Context Awareness over Transient Clouds", in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2015, pp. 1-5.
T. Penner et al., "Transient clouds: Assignment and collaborative execution of tasks on mobile devices," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2014, pp. 2801-2806.
T. Penner et al., "Demo: Transient clouds", in Proc. Int. Conf. Mobile Comput. Appl. Serv. (MobiCASE), 2014, pp. 153-154.
X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing", in Sustainable Green Networking and Computing in 5G Systems: Technol., Economics, Deployment, 2017.
T. F. Ndambomve, F. Mokom, and K. D. Taiwe, "A Dynamic Application Partitioning and Offloading Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents", Int. J. Comput , vol. 40, no. 1, pp. 109-126, 2021.
M. Shahzamal, "Lightweight Mobile Ad-Hoc Routing Protocols for Smartphones", Macquarie University, Sydney, Australia, Apr. 2018.
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2012, pp. 1–2793, Mar. 2012.
F. Gu, J. Niu, Z. Qi, and M. Atiquzzaman, "Partitioning and offloading in smart mobile devices for mobile cloud computing: State of the art and future directions", J. Netw. Comput. Appl , vol. 85, pp. 1-23, 2018.
A. Lakhan et al., "Dynamic Application Partitioning and Task-Scheduling Secure Schemes for Biosensor Healthcare Workload in Mobile Edge Cloud", Electronics , vol. 10, p. 2797, 2021.
Q.H. Nguyen and F. K. Hussain, "Smart Mobile Edge Computing for Wireless Sensor Networks: Energy Efficient Task Offloading Strategies", in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2022, pp. 281-285.
Z. Wei, X. Yu, and L. Zou, "Multi-Resource Computing Offload Strategy for Energy Consumption Optimization in Mobile Edge Computing," Processes , vol. 10, no. 1762, 2022, doi: 10.3390/pr10091762.
R. Tahboub and F. Warasna, "Security issues in Mobile Cloud Computing Frameworks based on Mobile Agents," Deanship of Graduate Studies and Scientific Research, Palestine Polytechnic University, Hebron, Palestine, 2015.
X. Liu, C. Yuan, Z. Yang, and Z. Zhang, "Mobile-agent-based energy-efficient scheduling with dynamic channel acquisition in mobile cloud computing," J. Syst. Eng. Electron. , vol. 27, no. 3, pp. 712–720, Jun. 2016.
Q. Wang, Y. Mao, Y. Wang, and L. Wang, "Computing task offloading based on multi-cloudlet collaboration," Comput. Appl. , vol. 40, pp. 328–334, 2020.
S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, "Context-aware multi-objective resource allocation in mobile cloud," Comput. Electr. Eng. , vol. 44, pp. 218-240, 2015, doi: 10.1016/j.compeleceng.2015.02.006.
B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, "An Online Algorithm for Task Offloading in Heterogeneous Mobile Clouds", ACM Trans. Internet Technol. , vol. 18, no. 2, Art. 23, 25 pages, Jan. 2018, doi: 10.1145/3122981.
V. Balasubramanian, K. Kroep, K. C. Joshi, and R. V. Prasad, "Reinforcing Edge Computing with Multipath TCP Enabled Mobile Device Clouds," 2019.
X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, "Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing," IEEE Wireless Commun. , Aug. 2017, doi: 10.1109/MWC.2017.1600321.
S. C. Shah, "A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video Surveillance System," J. Comput. Sci. Tech. Rep. , vol. 6, 2018.
C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, "Energy-efficient and Deadline-satisfied Task Scheduling in Mobile Cloud Computing," in Proc. IEEE Int. Conf. Big Data Smart Comput. , 2018.
S. M. Kak, P. Agarwal, and M. A. Alam, "Task Scheduling Techniques for Energy Efficiency in the Cloud", EAI Endorsed Trans. Energy Web , vol. 9, no. 39, Jun. 2022, doi: 10.4108/ew.v9i39.1509.
H. Wu, "Multi-Objective Decision-Making for Mobile Cloud Offloading: A Survey" IEEE Access , Feb. 28, 2018.
H. Cui, J. Zhang, C. Cui, and Q. Chen, "Solving large-scale assignment problems by Kuhn-Munkres algorithm", in Proc. 2nd Int. Conf. Adv. Mech. Eng. Ind. Inform. (AMEII), 2016.
H. W. Kuhn, "The Hungarian method for the assignment problem", Naval Res. Logistics Quart. , vol. 2, pp. 83–97, 1955.
A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar, O. Cheikhrouhou, M. Baz, and F. Jamil, "An Efficient Dynamic-Decision Based Task Scheduler for Task Offloading Optimization and Energy Management in Mobile Cloud Computing," Sensors , vol. 21, no. 13, p. 4527, 2021.
S. Nath and J. Wu, "Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile Edge Computing" in Proc. IEEE Global Commun. Conf. (GLOBECOM) , 2020.
G. A. Mills-Tettey, A. Stentz, and M. B. Dias, "The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs", Carnegie Mellon University, Jul. 2007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tiako Fani Ndambomve, Felicitas Mokom, Kolyang Dina Taiwe
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who submit papers with this journal agree to the following terms.