A Method for Identifying and Assessing Phishing Attacks in Communication Messages
Keywords:
Phishing, Communications, Chat Applications, Email, Machine LearningAbstract
Phishing attacks have become a significant threat in online communication platforms. These attacks exploit human vulnerabilities by using deceptive messages to steal sensitive information or distribute malicious content. This paper presents a comprehensive phishing detection system, leveraging machine learning and multi-layered analysis of URLs, files, and message content. The proposed system integrates URL analysis, file analysis, and text analysis services to identify potential threats effectively. Experimental results demonstrate the efficacy of the approach, achieving high accuracy in detecting phishing attempts. This research contributes to the field of cybersecurity by providing a robust framework for identifying and mitigating phishing risks in real-time communication.
References
APWG, Phishing Activity Trends Reports, 2024. Internet: https://apwg.org/trendsreports/ [Apr. 28, 2025]
T. Singh, M. Kumar, S. Kumar. “Walkthrough phishing detection techniques”. Computers and Electrical Engineering 118 (2024). https://10.1016/j.compeleceng.2024.109374.
P.H. Kyaw, J. Gutierrez, A. Ghobakhlou. “A Systematic Review of Deep Learning Techniques for Phishing Email Detection”. Electronics 13(19):3823 (2024). https://10.3390/electronics13193823.
E. H. Tusher, M. A. Ismail, M. A. Rahman, A. H. Alenezi and M. Uddin. “Email Spam: A Comprehensive Review of Optimize Detection Methods, Challenges, and Open Research Problems”. IEEE Access (2024) vol. 12, pp. 143627-143657, https://10.1109/ACCESS.2024.3467996.
A. Gunjan and R. Prasad. “Phishing Email Detection Using Machine Learning: A Critical Review” in: Proceedings of the 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 1176-1180, https://10.1109/IC2PCT60090.2024.10486341.
A. Al-Subaiey, M. Al-Thani, N. A. Alam, K. F. Antora, A. Khandakar, SM A. U. Zaman. “Novel interpretable and robust web-based AI platform for phishing email detection”. Computers and Electrical Engineering, Vol 120, 2024, https://doi.org/10.1016/j.compeleceng.2024.109625.
D. Sugianto, R. A. Putawa, C. Izumi, and S. A. Ghaffar. “Uncovering the Efficiency of Phishing Detection: An In-depth Comparative Examination of Classification Algorithms”. Int. J. Appl. Inf. Manag., vol. 4, no. 1, pp. 22–29, Apr. 2024. https://doi.org/10.47738/ijaim.v4i1.72.
J. Tanimu, S. Shiaeles, and M. Adda. “A Comparative Analysis of Feature Eliminator Methods to Improve Machine Learning Phishing Detection”. JDSIS, vol. 2, no. 2, pp. 87–99, Dec. 2023, https://10.47852/bonviewJDSIS32021736.
A. O. Taofeek. “Development of a Novel Approach to Phishing Detection Using Machine Learning”. ATBU Journal of Science, Technology and Education, vol. 12, n. 2, p. 336-351, jun. 2024. URL: https://www.atbuftejoste.com.ng/index.php/joste/article/view/2107.
D. Nahmias, G. Engelberg, D. Klein, A. Shabtai. “Prompted Contextual Vectors for Spear-Phishing Detection”. Computer Science, Machine Learning, 2024, https://doi.org/10.48550/arXiv.2402.08309.
T. Koide, N. Fukushi, H. Nakano, and D. Chiba. “ChatSpamDetector: Leveraging Large Language Models for E?ective Phishing Email Detection”. In: 20th EAI International Conference on Security and Privacy in Communication Networks (SecureComm 2024), October 28–30, 2024, Dubai, United Arab Emirates. https://doi.org/10.48550/arXiv.2402.18093.
T. Ige, C. Kiekintveld, A. Piplai, A. Waggler, O. Kolade, B. H. Matti. “An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey”. Computer Science, Cryptography and Security, https://doi.org/10.48550/arXiv.2411.16751.
R. Chataut, P. K. Gyawali and Y. Usman. “Can AI Keep You Safe? A Study of Large Language Models for Phishing Detection”. 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2024, pp. 0548-0554, https://10.1109/CCWC60891.2024.10427626.
F. S. Alsubaei, A. A. Almazroi and N. Ayub. “Enhancing Phishing Detection: A Novel Hybrid Deep Learning Framework for Cybercrime Forensics”. IEEE Access, vol. 12, pp. 8373-8389, 2024, https://10.1109/ACCESS.2024.3351946.
R. Goenka, M. Chawla, N. Tiwari. “A comprehensive survey of phishing: mediums, intended targets, attack and defence techniques and a novel taxonomy”. Int. J. Inf. Secur. 23, 819–848 (2024). https://doi.org/10.1007/s10207-023-00768-x.
M. Somesha, A.R. Pais. “DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms”. S?dhan? 49, 212 (2024), https://doi.org/10.1007/s12046-024-02538-4.
A. Bezerra, I. Pereira, M.Â. Rebelo. “A case study on phishing detection with a machine learning net”. Int J Data Sci Anal (2024). https://doi.org/10.1007/s41060-024-00579-w.
N. Altwaijry, I. Al-Turaiki, R. Alotaibi, F. Alakeel. “Advancing Phishing Email Detection: A Comparative Study of Deep Learning Models”. Sensors 2024, 24, 2077. https://doi.org/10.3390/s24072077.
S. R. Bauskar, C. R. Madhavaram, E. P. Galla, J. R. Sunkara, H. K. Gollangi. “AI-Driven Phishing Email Detection: Leveraging Big Data Analytics for Enhanced Cybersecurity”. Library Progress International, 2024, 44(3), 7211-7224.
Email Spam or Not (Classification), version 1, 2024. Internet: https://www.kaggle.com/datasets/devildyno/email-spam-or-not-classification [Apr. 28, 2025]
SMS Spam Detection Dataset, version 1, 2024. Internet: https://www.kaggle.com/datasets/vishakhdapat/sms-spam-detection-dataset [Apr. 28, 2025]
SMS Spam Collection Dataset, version 1, 2016. URL: https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset/data [Apr. 28, 2025]
Spam SMS Classification Using NLP, version 1, 2024. Internet: https://www.kaggle.com/datasets/mariumfaheem666/spam-sms-classification-using-nlp [Apr. 28, 2025]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Modestas Krištaponis, Jevgenijus Toldinas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who submit papers with this journal agree to the following terms.